Name :

K19U 0431

VI Semester B.Sc. Degree (CCSS – Supplementary)

Examination, April 2019

(2013 and Earlier Admission)

CORE COURSE IN MATHEMATICS

6R10 MAT: Apalysis and Topology

	obio mai . Analysis and repo	ology
Time: 3 Hours		Max. Weightage: 30
1. Fill in the blar	nks.	
a) If $P = (0, 0)$.5, 2.5, 3.5, 4) is a partition of [0, 4], the	
b) Let A = [0,	1] and $f(x) = \frac{x}{5}$ for all $x \in A$. Then $ f _A$	=
	hat A is an open subset of a metric space A) =	ce X.
	es the Cantor set, then its closure $\overline{F} = \underline{}$	(Weightage 1
	and the same of th	A LONG SAME AND A LIMES, AND ADDRESS OF

Answer any six from the following. Each carries a Weightage 1.

- 2. Define tagged partition of a closed bounded interval in \mathbb{R} .
- 3. Prove that every constant function on [a, b] is Riemann integrable on [a, b].
- 4. Find the limit of the sequence of functions (f_n) where $f_n(x) = \frac{x^2 + nx}{n}$, $x \in \mathbb{R}$.
- 5. Let (f_n) , (g_n) be sequences of bounded functions on A that converge uniformly on A to f, g respectively. Show that (f_ng_n) converges uniformly on A to fg.
- Prove that in every metric space X, the empty set φ and the full space X are open.
- 7. Define closed sphere in a metric space X. Give an example.
- Show that in a metric space every convergent sequence is a Cauchy sequence.

P.T.O.

- 9. Write two topologies \mathcal{T}_1 and \mathcal{T}_2 on $X = \{a, b, c\}$ so that $\mathcal{T}_1 \cup \mathcal{T}_2$ is not a topology.
- 10. Define a separable topological space and give an example.

 (Weightage 6×1=6)

Answer any seven from the following. Each carries a Weightage 2.

- 11. Show that the function $f(x) = \begin{cases} x+1, & \text{when } x \in [0,1] \text{ is rational} \\ 0, & \text{when } x \in [0,1] \text{ is irrational} \end{cases}$ is not Riemann integrable on [0,1].
- 12. Prove that if $f : [a, b] \to \mathbb{R}$ is continuous on [a, b], then $f \in R$ [a, b].
- 13. Show that a sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A to f if and only if $||f_n f||_A \to 0$.
- 14. Show that the sequence $\left(\frac{x^n}{1+x^n}\right)$ does not converge uniformly on [0, 2].
- 15. If 0 < R < ∞ is the radius of convergence of a power series ∑a_n xⁿ, then prove that the series is absolutely convergent when |x| < R and is divergent when |x| > R.
- 16. Let (X, d) be a metric space and $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, $\forall x, y \in X$. Then show that d_1 is also a metric on X.
- Prove that a subset F of a metric space X is closed if and only if its complement F' is open.
- 18. If a convergent sequence in a metric space has infinitely many distinct points, then prove that its limit is a limit point of the set of points of the sequence.
- Define subspace of a topological space and show that the subspace of a topological space is also a topological space.
- Show that a subset of a topological space is closed if and only if it contains
 its boundary. (Weightage 7x2=14)

Answer any three from the following. Each carries a Weightage 3.

- 21. Prove that if $f,g \in R$ [a,b] and $k \in \mathbb{R}$, then k f, $f+g \in R$ [a, b]. Also prove that in this case $\int_a^b kf = k \int_a^b f$ and $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.
- 22. State and prove the Fundamental Theorem of Calculus (First form). Using the theorem evaluate $\int_{a}^{b} \frac{1}{x^2+1} dx$.
- 23. Let (f_n) be a sequence of functions in R [a, b] and suppose that (f_n) converges uniformly on [a, b] to f. Then prove that $f \in R$ [a, b] and $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.
- 24. Define nowhere dense subset of a metric space and give an example. Prove that if a complete metric space is the union of a sequence of its subsets, then the closure of atleast one set in the sequence must have non-empty interior.
- 25. If A and B are subsets of a topological space X, then prove that :
 - i) A is the smallest closed set containing A,
 - ii) $\overline{\phi} = \phi$
 - iii) $\overline{\overline{A}} = \overline{A}$ and
 - iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$

(Weightage 3x3=9)