6. Check the consistency and solve x+y+z=6, x-y+z=2, 2x+y-z=1,

27. Use Gauss Jordan method, solve 5x - 2y + z = 4; 7x + y - 5z = 8; 3x + 7y + 4z = 10

28. Find the characteristic rock and the confession of an exercise vectors of the

2 8- 8- xinem

G-MOITORR

Answer any two questions. Each question cames 6 marks.

It is a non-empty subset of a vector apace V, then show that the set W consist of all imper combinations of elements of S is a subspecie of V. Morrever W is

the emailies unbapage of V containing S.

If Find a bases for the subspaces $W_1 = ((a_1, a_2, a_3, a_4) \in F(a_1, a_2, a_3) \in F(a_1, a_2, a_3)$ and $W_2 = ((a_1, a_2, a_3, a_3) \in F(a_1, a_2, a_3) \in F(a_1, a_2, a_3) \in F(a_1, a_2, a_3)$

into $W_1 = \{(a_1, a_2, a_3, a_4, a_5) \in F \forall a_2 = a_3 = a_4 = 0, a_7 + a_5 = 0\}$ of F2. What and by dimension of W₁ and W₂?

0 0 1V

t 0 1 0

OSA, atmures

g n s 0 d 0 xittem at the matrix 0 b 0

0 0 0

38, Use Gauss method compute the inverse of A = 3 2 3 .

Investigate for what value of x_i μ_i the system of equation $x=y+z=0; x=2y+3z=10; x=2y+3z=\mu$ has (i) No solution,

another or any solution. He a inlinite number of solutions.

K21U 0127

Reg. No. :

Name :

Sixth Semester B.Sc. Degree (CBCSS - Reg./Supple./Improve.)

Examination, April 2021 (2014 – 2018 Admissions)

CORE COURSE IN MATHEMATICS 6B10 MAT : Linear Algebra

Time: 3 Hours

Max. Marks: 48

SECTION - All upo olfanetociario em bm? Et

Answer all the questions. Each question carries 1 mark.

- 1. Define a vector space V over a field F.
- 2. When we say V is the direct sum of the subspaces W₁ and W₂ ?
- 3. Find the characteristic roots of A = $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 4 \end{pmatrix}$.
- 4. Show that the vectors starting from the origin and terminating at (-3, 1, 7) and (9, -3, -21) are parallel.

SECTION - E

Answer any eight questions. Each question carries 2 marks.

- 5. Let W_1 , W_2 are two subspaces of a vector space V then prove that $W_1 \cap W_2$ is a subspace.
- 6. Show that $2x^3 2x^2 + 12x 6$ is a linear combination of $x^3 2x^2 5x 3$ and $3x^3 5x^2 4x 9$.
- 7. Prove Cancellation law of vector addition.
- Let V and W be vector spaces and T: V → W be linear then show that N(T) is a subspace of V.

O.T.9. U with respect to standard ordered basis.

K21U 0127

- Let V and W be vector spaces and T from V to W be linear then prove that T is one to one if and only if N(T) = {0}.
- 10. Show that T: $R^2 \rightarrow R^2$ by $T(a_1, a_2) = (2a_1 + a_2, a_1)$ is linear.
- Let A be an m x n matrix and let B and C be n x p matrices then prove that A(B + C) = AB + AC.
- 12. Find the product of characteristic roots of A = $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$
- 13. Find the characteristic equation of A = $\begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix}$.
- Define eigenvalue and eigenvector of a Matrix.
- 15. Show that A and A' have the same eigenvalues.
- 16. Show that every singular matrix is a right as well as left zero divisor.
- 17. If X_1 , X_2 are solutions of AX = 0, then show that $k_1X_1 + k_2X_2$ is also a solution. Where k_1 , k_2 are scalars.
- 18. Find the equation of line through (-2, -1, 5) and (9, -3, -21).
- 19. Use Gaussian elimination method, solve 2x + y + z = 10; 3x + 2y + 3z = 18; x + 4y + 9z = 16.
- 20. Show that $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ is diagonalizable.

Answer any four questions. Each question carries 4 marks.

- 21. Let S be a linearly independent subset of a vector space V, and let x be an element of V that is not in S. Then prove that S ∪ {x} is linearly dependent if and only if x ∈ Span(S).
- 22. Let V be a vector space and S a subset that generates V. If B is a maximal linearly independent subset of S, then show that B is a basis for V.
- 23. Define U : $R^2 \rightarrow R^3$ by U(a₁, a₂) = (a₁ a₂, 2a₁, 3a₁ + 2a₂). Find the matrix of U with respect to standard ordered basis.

-3-

K21U 0127

- 24. Prove that every square matrix satisfies its characteristic equations.
- 25. If A is non singular, prove that the eigenvalues of A⁻¹ are the reciprocals of the eigenvalues of A.
- 26. Check the consistency and solve x + y + z = 6; x y + z = 2; 2x + y z = 1.
- 27. Use Gauss Jordan method, solve 5x 2y + z = 4; 7x + y 5z = 8; 3x + 7y + 4z = 10.
- 28. Find the characteristic roots and the corresponding characteristic vectors of the

$$\text{matrix} \begin{cases}
 8 & -6 & 2 \\
 -6 & 7 & -4 \\
 2 & -4 & 3
 \end{cases}.$$

SECTION - D

Answer any two questions. Each question carries 6 marks.

- 29. If S is a non empty subset of a vector space V, then show that the set W consist of all linear combinations of elements of S is a subspace of V. Moreover W is the smallest subspace of V containing S.
- 30. Find a bases for the subspaces $W_1 = \{(a_1, a_2, a_3, a_4, a_5) \in F^5/a_1 a_3 a_4 = 0\}$ and $W_2 = \{(a_1, a_2, a_3, a_4, a_5) \in F^5/a_2 = a_3 = a_4 = 0, a_1 + a_5 = 0\}$ of F^5 . What are the dimension of W_1 and W_2 ?
- 31. If $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Show that for every integer $n \ge 4$, $A^n = A^{n-2} + A^3 A$. Hence

evaluate A20.

- 32. Find all latent vectors of the matrix $\begin{pmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$
- 33. Use Gauss method compute the inverse of $A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$
- 34. Investigate for what value of λ , μ , the system of equation x + y + z = 6; x + 2y + 3z = 10; $x + 2y + \lambda z = \mu$ has (i) No solution, (ii) a unique solution, (iii) a infinite number of solutions.