100	JEH CO	(Con
15	AT LESS	ATEY I'M
18/0	7	
	THALK	

M 8162

Reg. No.:....

Name :

	CORE COURSE I	CCSS – Reg./Supple./Improv.) n, May 2015 N MATHEMATICS inear Algebra	
in	ne: 3 Hours	Max. Weightage: 30	
1.	Fill in the blanks :		
	a) Dimension of c the set of all complex	numbers is	
	b) The smallest subspace of a vector s	pace is	
	c) In a row reduced echelon matrix, the	non-zero leading entry in a row is	
	d) If T is a linear transformation, then the known as	ne dimension of null space of T is (Weightage 1)	
Ar	nswer any six from the following (Weight	age 1 each):	
2.	Define subspace of a vector space.		
3.	Give a basis for \mathbb{R} .	man ng dita 🐞 💓 manakani A	
4.	By an example, show that union of two subspaces of a vector space need not be a subspace.		
5.	Using graphs, solve $2x + y = 3$; $4x + 2y = -1$.		
6.	What do you mean by row echelon form of matrix? Give an example.		
7.	State Cayley Hamilton theorem.		
8.	Check whether the function $T:\mathbb{R}^3 \to \mathbb{R}^2$	defined $T(x, y, z) = (x - y, y + z)$ is a	

- linear transformation or not.

 9 Prove that range space of a linear transformation from the vector space LI to V is
- Prove that range space of a linear transformation from the vector space U to V is a subspace of V.
- 10. What do you mean by non-singular transformation?

(Weightage 6×1=6)

Answer any seven from the following (Weightage 2 each):

- Let P_n be the set of all polynomials of degree ≤ n. Let V = {p(x) ∈ P_n(x) / p(1) = 0}.
 Show that V is a vector space with respect to usual addition and scalar multiplication of polynomials.
- 12. Find k such that $\{(2, -1, 3), (3, 4, -1), (k, 2, 1)\}$ is linearly independent.
- 13. Show that the equations x + 2y + z = 2, 2x + y 10z = 4, 2x + 3y z = 2 are consistent and solve them.
- Find the eigen values and eigen vector corresponding to the smallest eigen value of the matrix

$$A = \begin{bmatrix} 2 & 2 & 1 \\ -4 & 8 & 1 \\ -1 & -2 & 0 \end{bmatrix}$$

- Prove that for a symmetric matrix any two eigen vectors from different eigen space are orthogonal.
- 16. Prove that similar matrices have the same characteristic polynomial.
- 17. Check whether $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(1, 2, 2) = (2, 3, 1), T(0, 1, 2) = (1, -1, 3), T(3, -4, 1) = (1, 1, -2) and T(3, -1, 5) = (4, 3, 2) is linear.
- 18. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map defined by T(x, y, z) = (x y, 2y + z, 0). Find the null space, range space and check whether T is one-to-one.
- 19. Let U and V be two finite dimensional vector spaces and T: U → V be a linear map. If dim U = dim V = n, then prove that T is one-one if and only if T is onto.
- 20. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ -2 & -3 & -1 \end{bmatrix}$. (Weightage 7×2=14)

Answer any three from the following (Weightage 3 each):

- If U and V are subspaces of a finite dimensional vector space, prove that dim (U + W) = dim U + dim V − dim (U ∩ V).
- 22. Using row elementary transformations, find the inverse of the matrix

$$\begin{bmatrix} 3 & -2 & 1 \\ 1 & 3 & -2 \\ 2 & -1 & 3 \end{bmatrix}.$$

- 23. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -2 & 2 \end{bmatrix}$.
- 24. Diagonalise the matrix $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$.
- 25. State and prove rank-nullity theorem.

0

(Weightage: 3×3=9)