DSC UDITAL 6-

1 2 1 2 1 2 1 2 2 2 2 2 2 4 3 4

A ship mank of the matrix A

3 7 4 8

Assurer any United from the following:

next $W=\{(x_x,x_y,x_y)\in\mathbb{R}^2: x_y=2x_y+2x_y=0\}$ be subspaces of \mathbb{R}^2

W-U bas W U to not enough bas signed is brill and the water water water and the state of the sta

A delication for the factor of the factor of

is investible or not. If the investible, find A ...

23 Lieuro Caylay Franction Indonesis, fund the inverse of the matrix A = 2 1 2

23. Usung Caylay - samuon Indonem, lind the tryons of the matrix A = 2.2.2

24 Diagonalise the matrix A = 4 4 -4 2 4 5

9. What do you mean by a matrix related to linear transformation ? Let $T:P_c\to FP$ be a linear transformation defined by T ($a+bx+cx^2$) = (a,c-b,c-a). Find the

The trapmagnishing of T with mapped to the ordered basis $B_1 = (1, x, x^2)$ of P_2 and $B_2 = (1, 0, 0)$, (0, 1, 0), (0, 0, 1) of R^2 .

(Weightage 3x3=9)

Reg. No. :

K16U 0203

VI Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.)

Examination, May 2016

CORE COURSE IN MATHEMATICS

	BE COURSE IN BB12 MAT : Lin		cs o lee and ad - he pays tillw gosiqa solod	
Time: 3 Hours	Soxy(x) to		Max. Weightag	e:30
Fill in the blanks: a) Dimension of trivial v	vector space {0} is			
 b) The largest subspace c) In a row reduced ech other entries in that c 	elon matrix, if a col			
d) If T is a linear transfo known as	ormation, then the	dimension of ra	ange space of T is (Weightag	je : 1
Answer any six from the following:				each
2. What do you mean by s	pan of a set?	1 2		
Give a basis for C .	is tantials of guid			
4. Prove that $W = \{(x_1, x_2, x_3, x_4, x_4, x_5, x_5, x_5, x_5, x_5, x_5, x_5, x_5$	$(x_3) \in \mathbb{R}^3 / x_1 + x_2$	$+ x_3 = 0$ is a s	ubspace of $V = \mathbb{R}^3$.	

- 7. If $\lambda(\neq 0)$ is an eigen value of a non-singular matrix A, prove that $\frac{1}{\lambda}$ is an eigen value of A $^{-1}$.
- 8. If T: U \rightarrow V be a linear map, then prove that $T(0_u) = 0_v$.

5. Using graphs, solve 2x + y = 3; 4x + 2y = 6.

6. What do you mean by row-rank of a matrix?

- 9. Define kernal of a linear transformation.
- What do you mean by idempotent map? Give an example. (Weightage 6x1=6)

Answer any seven from the following:

(Weightage 2 each)

11. Let F be the set of all real valued functions from ℝ into ℝ . Show that F is a vector space with respect to the operations.

(f + g)(x) = f(x) + g(x); and $(\alpha f)(x) = \alpha f(x) \forall x \in \mathbb{R}$.

- 12. Determine whether or not the vectors (1, -1, 2), (2, 3, 1) and (4, 5, 6) in \mathbb{R}^3 are linearly dependent.
- 13. Show that the equations 2x 3y + 4z = 23, 3x + 4y 8z = -19, 4x y 2z = 11, x + 2y 2z = -7 are consistent and solve them.
- 14. Find the eigen values and eigen vector corresponding to the largest eigen value

of the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix}$.

- Prove that eigen vectors corresponding to distinct eigen values of a square matrix are linearly independent.
- Prove that constant term of the characteristic polynomial of a matrix A is
 (-1)ⁿ |A| where n is the order of A.
- 17. Check whether the function $T: P_2 \to \mathbb{R}^3$ defined by $T(a + bx + cx^2) = (c a, a + b, b + c)$ is a linear transformation or not.
- 18. Find the null space, range space and their dimensions of the linear transformation $T: \mathbb{R}^3 \to \mathbb{P}_2$ defined by $T(a, b, c) = (a + c) + (b a) \times (b + c) \times^2$.
- 19. Let T be a linear operator defined on \mathbb{R}^3 such that $T(e_1) = e_1 + e_2$, $T(e_2) = e_2 + e_3$, $T(e_3) = e_1 + e_2 + e_3$ where $\{e_1, e_2, e_3\}$ is a standard basis for \mathbb{R}^3 . Is T nonsingular? If so, find T^{-1} .

20. Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 6 \end{bmatrix}$$
 (Weightage 7x2=14)

(Weightage 3 each)

Answer any three from the following:

21. Let $U = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + x_2 - 2x_3 = 0 \}$

and W = $\{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - 3x_2 + 2x_3 = 0\}$ be subspaces of \mathbb{R}^3 . Find a basis and dimension of U, W and U \cap W.

22. Using the row reduction method, check whether the given matrix

$$A = \begin{bmatrix} -1 & 1 & 1 \\ 3 & 1 & -1 \\ 2 & 2 & 1 \end{bmatrix}$$
 is invertible or not. If it is invertible, find A $^{-1}$.

- 23. Using Cayley-Hamilton theorem, find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$
- 24. Diagonalise the matrix $A = \begin{bmatrix} -2 & 4 & -2 \\ 4 & 4 & -4 \\ -2 & -4 & 5 \end{bmatrix}$
- 25. What do you mean by a matrix related to linear transformation? Let T: P₂ → R³ be a linear transformation defined by T (a + bx + cx²) = (a, c b, c a). Find the matrix representation of T with respect to the ordered basis B₁ = {1, x, x²} of P₂ and B₂ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R³. (Weightage 3x3=9)