CEL MILIGIARY A

K17U 0115

(Weightage 1)

Reg. No.:	
lame :	Cuk (ex (ex (ex)) = V mith doctrical
VI Semester B.Sc. Degree (CCSS - Sup May 2017	
CORE COURSE IN MAT	THEMATICS
6B12 MAT : Linear Algebra (2	009-2013 Admns.)
ime : 3 Hours	Weightage: 30
Fill in the blanks: A white and its example.	
a) The number of elements in the basis of a vec	ctor space is
b) Example for a subspace of \mathbb{R}^2 is	handpering trill to only
 In the system of equations AX = B, if row-ran of unknowns, then the number of solutions is 	

Answer any six from the following (Weightage 1 each).

d) If T is a linear transformation, then the value of T(0) is

- 2. What do you mean by linear combination of vectors?
- Prove that intersection of two subspaces of a vector space is also a subspace of the vector space.
- 4. Prove that every subset of a linearly independent set is also linearly independent.
- 5. Using graphs, solve 2x + y = 3; x 2y = -1.
- 6. Compare row-echelon form and row-reduced echelon form of a matrix.
- 7. Find the characteristic polynomial of A = $\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$
- 8. Give an example for a linear transformation:
- 9. What do you mean by rank and nullity of a linear transformation?
- Define row-rank, column-rank and rank of a matrix.

(Weightage 1×6=6)

Answer any seven from the following (Weightage 2 each).

- 11. Prove that $V = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 | x_1 + x_5 = 0 \}$ is a vector space with respect to usual addition and scalar multiplication of vectors.
- 12. Determine whether the set $\{1 + x, x + x^2, x^2 + 1\}$ of vector space of polynomials of degree ≤ 2 is linearly independent or not.
- 13. Test for consistency and solve the equations 2x + 3y + 2z = 16, 3x + y + z = 6, x + 5y + 3z = 1.
- 14. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$.
- Prove that for a symmetric matrix any two eigen vectors from different eigen spaces are orthogonal.
- Prove that constant term of the characteristic polynomial of a matrix A is (-1)ⁿ|A| where n is the order of A.
- 17. Check whether T: $R^2 \rightarrow R^2$ defined by T(1, 2) = (2, 3), T(0, 1) = (1, -1), T(3, -4) = (5, 7) is linear.
- 18. Find the null space, range space and their dimensions of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by T(x, y, z) = (x, x + y, x + y + z, z).
- 19. Let T be a linear operator from \mathbb{R}^3 to P_2 , the set of all polynomials of degree ≤ 2 defined by $T(a, b, c) = (a + b) + (b + c) x + (c + a)x^2$. Prove that T is one-one and onto and hence find T^{-1} .
- 20. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$. (Weightage 2×7=14)

Answerany three from the following (Weightage 3 each).

- 21. Let $U = \{(x_1, x_2, x_3) \in \mathbb{R}^3/2x_1 3x_2 + 5x_3 = 0\}$ and $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3/4x_1 + x_2 3x_3 = 0\}$ be subspaces of \mathbb{R}^3 . Find a basis and dimension of U, W and U \cap W.
- 22. Using row elementary transformations, find the inverse of the matrix $\begin{bmatrix} -1 & 1 & 1 \\ 3 & 1 & -1 \\ 2 & 2 & 1 \end{bmatrix}$

- 23. Show that the matrix $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{bmatrix}$ satisfies its characteristic equation. Also find its inverse.
- 24. Diagonalise the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$
- 25. Let $T: \mathbb{R}^3 \to \mathbb{P}_2$ be a linear map and matrix corresponding to the linear map T be $\begin{bmatrix} -1 & 2 & 0 \\ 0 & 3 & -2 \\ 1 & -1 & 3 \end{bmatrix}$ where $B_1 = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$ is a basis of \mathbb{R}^3 and

 $B_1 = \{1 + x, x + x^2, x^2 + 1\} \text{ is a basis of } P_2. \text{ Find } T(x, y, z) \text{ for a vector } (x, y, z) \in \mathbb{R}^3.$ (Weightage 3×3=9)