

K17U 0116

Reg. No. :

Name :

VI Semester B.Sc. Degree (CCSS – Supple:/Improv.) Examination, May 2017
CORE COURSE IN MATHEMATICS

6B13 MAT : Integral Transforms (2009-2013 Admns.)

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks:
 - a) Laplace transform of t² is _____
 - b) Fundamental period of cos2x is _____
 - c) Product of an even and an odd function is _____
 - d) Z(u(n)) =

(Weightage: 1)

Answer any six from the following. (Weightage 1 each):

- 2. State the condition for the existence of Laplace transform.
- Find L((t+1)²e^t).
- 4. Find the inverse Laplace transform of $\frac{2}{s^2 + s + \frac{1}{2}}$
- 5. Explain the Fourier sine series and cosine series expansion of functions.
- 6. State final value theorem for Z-transform.
- 7. Find Z-transform of $\cos \frac{n\pi}{2}$.
- 8. Find Z-transform of $(t + T)e^{-(t+T)}$.
- Explain Fourier integral representation of functions.
- 10. Find Fourier cosine transform of $f(x) = e^{-x}$.

(Weightage: 6x1=6)

Answer any seven from the following. (Weightage 2 each):

- 11. State and prove first shifting theorem for Laplace transform.
- 12. Find the inverse Laplace transform of $log \left(1 + \frac{w^2}{s^2}\right)$

K17U 0116

- 13. Find the Fourier series expansion of $f(x) = \pi x$ in the interval 0 < x < 2.
- 14. Express $f(x) = t t^2$ as a half range sine series in 0 < t < 1.
- 15. Find the complex Fourier series of $f(x) = e^{-x}$, $-1 \le x \le 1$.
- 16. State and prove first shifting theorem for Z-transforms.
- 17. Find the Z-transform of f * g where $f(n) = \cos \frac{n\pi}{2}$ and $g(n) = \sin \frac{n\pi}{2}$.
- 18. Using convolution method, find the inverse Z-transform of $\frac{z^2}{(z-2)(z-3)}$.
- 19. Find the Fourier integral of $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$
- $20. \ \ With usual notation, prove that \ F_{_s}\left\{f^{''}(x)\right\} = -w^2F_{_s}\left\{f(x)\right\} + \sqrt{\frac{2}{\pi}} \ wf(0) \ .$

(Weightage: 7x2=14)

Answer any three from the following. (Weightage 3 each) :

- 21. Solve the integral equation $y(t) = t + \int_{0}^{t} y(\tau) \sin(t \tau) d\tau$.
- 22. Using Laplace transform, solve the initial value problem :

$$\frac{dy}{dt} + 2x + y = 0; \ \frac{dx}{dt} + 5x - 2y = t, \ y(0) = x(0) = 0.$$

23. Obtain the Fourier series for the function $f(x) = x - x^2$ in the interval $(-\pi, \pi)$.

Deduce that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$
.

- 24. a) Find Z-transform of cosn θ.
 - b) Find the inverse Z-transform of $\frac{8z^2}{(2z-1)(4z-1)}$
- 25. Find the Fourier transform of $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| < 1 \end{cases}$. Hence evaluate $\int_0^\infty \frac{\sin x}{x} \, dx$.

(Weightage: 3×3=9)