| 3. 1.  |  |
|--------|--|
| 14 1/2 |  |
|        |  |
|        |  |



(Weightage 1)

Time: 3 Hours

## VI Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.) Examination, May 2015 CORE COURSE IN MATHEMATICS 6 B13 MAT : Integral Transforms

| Time: 3 Hours                         | Max. Weightage: 30 |
|---------------------------------------|--------------------|
| 1. Fill in the blanks :               |                    |
| a) Laplace transform of f (t) = 1 is  |                    |
| b) Example for a periodic function is |                    |

- 2. Define Laplace transform.
- 3. Find L (sin at sinh at).
- 4. Find the inverse Laplace transform of  $\frac{s^2}{s^2+6s+18}$
- Explain the expressions for the Fourier coefficients a<sub>0</sub>, a<sub>n</sub> and b<sub>n</sub> of a periodic function f (x) with a period 2L in the interval (-L, L).
- 6. Explain the convergence of Z-transform.
- 8. State convolution theorem for Z-transforms.

## M 8163





10. Find Fourier sine transform of  $f(x) = \begin{cases} x^2 & 0 < x < 1 \\ 0 & 0 < x < 1 \end{cases}$ 

(Weightage 6×1=6)

Answer any seven from the following: (Weightage 2 each)

- 11. Define unit step function. Also find Laplace transform of f (t)
- 12. Find the inverse Laplace transform of  $\frac{2s^2 6s + 5}{s^3 6s^2 + 11s 6}$
- 13. Find the Fourier series expansion of  $f(x) = x^2$  from (-1, 1).
- 14. Express f (x) = x sin x as a half range cosine series in  $0 < x < \pi$ .
- 15. Compute the total square error of F with N = 3 relative to  $f(x) = x + \pi, -\pi < x < \pi$  on the interval  $-\pi \le x \le \pi$ .
- 16. State and prove initial value theorem for the Z-transforms.
- 17. Find the Z-transform of f \* g where f(n) = n (n-1) and  $g(n) = 3^n$ .
- 18. Using long division method, find the inverse Z-transform of  $\frac{10z}{z^2 3z + 2}$ .
- 19. Find the Fourier sine integral of  $f(x) = \begin{cases} \sin x, & 0 < x < \pi \\ 0, & x > \pi \end{cases}$ .
- 20. Let f (x) be continuous on the x-axis, f (x)  $\rightarrow$  0 as | x |  $\rightarrow \infty$  and f' (x) be absolutely integrable on the x-axis, then prove that  $F\{f'(x)\} = iw F\{f(x)\}$ . (Weightage 7×2=14)

Answer any three from the following: (Weightage 3 each)

- 21. Using convolution theorem, find the inverse Laplace transform of  $\frac{s}{(s+a^2)^2}$ .
- 22. Using Laplace transform, solve the initial value problem:

$$y''' + 2y'' - y' - 2y = 0$$
,  $y(0) = 0$ ,  $y'(0) = 0$ ,  $y''(0) = 6$ .

- 23. Obtain the Fourier series for the function  $f(x) = |x|, -\pi < x < \pi$ . Deduce that  $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$
- 24. a) Find Z-transform of rn cos na.
  - b) Find the inverse Z-transform of  $\frac{z}{z^2 + 7z + 10}$ .
- 25. Deduce complex Fourier integral representation formula from the Fourier integral formula. (Weightage 3x3=9)