

VI Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.) Examination, May 2014 CORE COURSE IN MATHEMATICS 6B13 MAT: Integral Transforms

	3 Hours .[m]unb = [m]g br	ns (n)p = (n)Lanedw p = 1 to mno Max. Weightage : 3	10
		S. Using partial fraction mailton, first the inverse Z.	
1. Fil	I in the blanks :		
		A Find the Fourier side inlumed of the arrest series	
b)	Period of cosx is	3. With entail notation, prove that	
c)	If f(x) is odd, then the value	of $\int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi i \pi} \int_{-\pi}^{\pi} f(x) dx$	
d)	Z(a ⁿ) =	(Weightage	(**
Answ	er any six from the following	(weightage 1 each):	
2. St	ate the condition for the exist		

- 3. Find $L\left(\frac{\sin at}{t}\right)$.
- 4. Find the inverse Laplace transform of $\frac{1}{s^2+4s+5}$
- Explain the half range Fourier sine series and cosine series expansion of functions.
- 6. State initial value theorem for Z-transform.
- Find Z-transform of n².
- Find Z-transform of sin (t + T).
- 9. Explain Fourier transform and inverse Fourier transform formulae.
- 10. Find Fourier cosine transform of $f(x) = e^{-x}$.

(Weightage 6×1=6)

Answer any seven from the following (weightage 2 each):

11. State and prove second shifting theorem for Laplace transform.

P.T.O.

- 12. Using convolution theorem, find $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$
- 13. Find the Fourier series expansion of f(x) = |x| in the interval $-\pi < x < \pi$.
- 14. Express $f(x) = e^x$ as a half range sine series in 0 < x < 1.
- 15. Find the complex Fourier series of $f(x) = \cos ax$, $-\pi < x < \pi$.
- 16. Find Z-transform of n(n-1) anu(n).
- 17. Find the Z-transform of f * g where f(n) = u(n) and $g(n) = 4^n u(n)$.
- 18. Using partial fraction method, find the inverse Z-transform of $\frac{z}{z^2 + 11z + 24}$.
- 19. Find the Fourier sine integral of $f(x) = e^{-kx}$.
- 20. With usual notation, prove that

$$F_c \{f''(x)\} = -\omega^2 F_c \{f(x)\} - \sqrt{\frac{2}{\pi}} f'(0)$$

(Weightage 7×2=14)

Answer any three from the following (weightage 3 each):

- 21. State and prove Convolution theorem for Laplace transforms.
- 22. Using Laplace transform, solve the Laguerre's differential equation:

$$y'' + 2y' + 5y = e^{-t} \sin t, y(0) = 0, y'(0) = 1$$

23. Obtain the Fourier series for the function $f(x) = x + x^2$ in the interval $(-\pi, \pi)$. Deduce that

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$

- 24. a) Using convolution method, find the inverse Z-transform of $\frac{z^2}{(z-2)(z-3)}$.
 - b) Using power series method, find the inverse Z-transform of log $\left(\frac{z}{z+1}\right)$.
- Deduce Fourier integral representation formula from the Fourier series formula.
 (Weightage 3x3=9)