Answer and the section of the control of the control of the control of the section of the control of the contro

K17U 0369

Reg. No. :

VI Semester B.Sc. Degree (CBCSS – Regular) Examination, May 2017

CORE COURSE IN MATHEMATICS

(2014 Admn.)

6B12 MAT: Complex Analysis

Time: 3 Hours Max. Marks: 48

SECTION - A

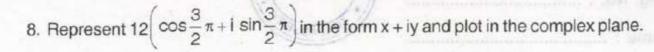
All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Find the principal value of the argument of the complex number $-\pi i\pi$.
- 2. Evaluate $\int_{-1}^{1} \frac{dz}{z}$.
- 3. Show by example that f being analytic is not necessary to hold $\oint_C f(z) dz = 0$.
- 4. When do you say that z_0 is an isolated singularity of f(z)?

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Prove that :
 - a) z is real if and only if $\overline{z} = z$.
 - b) z is either real or pure imaginary if and only if $\overline{z}^2 = z^2$.
- 6. Show that an analytic function of constant absolute value is constant.
- Find all values of ³√216.

K17U 0369



- 9. Determine whether the function f defined by $f(z) = \overline{z}$ is analytic.
- 10. Evaluate \int_{C} Re z dz, C the parabola $y = x^2$ from 0 to 1 + i.
- 11. Determine whether the series $\sum_{n=1}^{\infty} n^2 \left(\frac{i}{3}\right)^n$ is convergent or divergent.
- 12. Find the radius of curvature of the power series, $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$.
- 13. Find the Laurent series of $\frac{1}{z(z-1)}$ that converges for 0 < |z| < R and determine the precise region of convergence.
- 14. Show that the zeros of an analytic function $f(z) \neq 0$ are isolated.

SECTION-C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Find the principal value of $(1-i)^{1+i}$.
- 16. State and prove Cauchy's integral formula.
- 17. Integrate $g(z) = (z^2 1)^{-1} \tan z$ around the circle C: |z| = 3/2 (counter-clockwise).
- 18. Find the Maclaurin series of $f(z) = \tan^{-1} z$.
- 19. If a series $z_1 + z_2 + \dots$ is such that $\lim_{n \to \infty} \sqrt[n]{|z_n|} = L$ then show that
 - a) The series converges absolutely if L < 1.
 - b) The series diverges if L > 1.
- 20. Determine the location and type of singularities of $\tan \frac{1}{2}\pi z$, including those at infinity. In the case of poles also state the order.

K17U 0369

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. Show that
 - a) $\cos z = \cos x \cosh y i \sin x \sinh y$ and $\sin z = \sin x \cosh y + i \cos x \sinh y$
 - b) $|\cos z|^2 = \cos^2 x + \sinh^2 y$ and $|\sin z|^2 = \sin^2 x + \sinh^2 y$.
 - c) $\cos z$ and $\sin z$ are periodic with period 2π .
- 22. a) Integrate $\frac{\text{Ln}(z+3) + \cos z}{(z+1)^2}$ counter clockwise around the circle |z| = 2.
 - b) State and prove Liouville's theorem.
- 23. Develop $\cos \pi z$ in a Taylor series with $\frac{1}{2}$ as center. Find the radius of convergence.
- 24. Evaluate the integral $\oint_{C} \left(\frac{Ze^{\pi z}}{z^4 16} + Ze^{\pi/z} \right) dz$ where C is the ellipse $9x^2 + y^2 = 9$, counter clockwise.