

M 8161

Reg. No. :	THALAS
Name:	
VI Semester B.Sc. Degree (CCSS Examination, Ma CORE COURSE IN MA 6B11 MAT : Comple	y 2015 ATHEMATICS
Time: 3 Hours	Max. Weightage:
1. Fill in the blanks (Weightage 1):	
a) If $z = x + iy$, then $ z =$	
b) If $f(z) = u(r, \theta) + iv(r, \theta)$, then the polar for equations are	orm of the Cauchy-Riemann
c) The simularities of the functions $f(z) = (z + 1)$	1) / z ³ (z ² + 1) are
d) If $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ then residue of f	f(z) at $z = a$ is (Wt.

Answer any 6 questions from the following 9 questions. (Weightage one each):

- 2. If z = x + iy is any non-zero complex number, obtain z^{-1} and verify that $zz^{-1} = 1$.
- 3. Examine whether $f(z) = z^2$ satisfy the Cauchy-Riemann equations.
- 4. If f'(z) = 0 everywhere in a domain D, show that f(z) is a constant throughout D.
- 5. Show that $u(x, y) = \sinh x \sinh y$ is harmonic.
- 6. Find the values of z such that $e^z = -1$.
- 7. Evaluate $\int_{C} \left(e^{2z}/(z+1)\right)^{dz}$, where C is the circle |z|=2.
- 8. Prove that $\sin^{-1} z = -i \log \left[iz + (1-z^2)^{\frac{1}{2}} \right]$.
- 9. State the Laurent's theorem.
- 10. Find the residue of $f(z) = \frac{z}{(z-1)(z+1)^2}$ at the poles.

(6×1=6) P.T.O. M 8161

Answer any seven questions from the following 10 questions (weightage 2 each).

- 11. If z_1 and z_2 are any two complex numbers, show that $|z_1 + z_2| \le |z_1| + |z_2|$.
- If f: C→C is continuous at a point z₀∈C and f(z₀) ≠ 0, show that f(z) ≠0 throughout some neighbourhood of z₀.
- 13. Prove that $\frac{d}{dt}(e^{z_0t}) = z_0e^{z_0t}$, where $z_0 = x_0 + iy_0$.
- 14. Using De-Moivre's theorem, express $\cos 3\theta$ in powers of $\cos \theta$.
- 15. Find $\int_{C}^{\overline{z} dz}$, where C is the right hand half of the circle |z| = 2.
- 16. With the aid of remainders, show that $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$, where |z| < 1.
- 17. If a function f(z) is analysis inside and on a positively oriented circle C with centre at z_0 and radius R, show that $|f^{(n)}(z_0)| \le \frac{n!M}{R^n}$, n=1,2,..., where M is a positive real number such that $|f(z)| \le M$.
- 18. If the function f(z) has a pole of order m at z_0 , show that $f(z) = \frac{\varphi(z)}{(z-z_0)^m}$, where $\varphi(z)$ is analytic and non-zero at z_0 .
- 19. Show that $z = \frac{\pi_i}{2}$ is a simple pole of $f(z) = \frac{\tanh z}{z^2}$ and find the residue of f(z) at $z = \frac{\pi_i}{2}$.
- 20. If two functions p and q are analytic at a point z_0 , $p(z_0) \neq 0$, $q(z_0) = 0$ and $q'(z_0) \neq 0$, show that z_0 is a simple pole of the quotient p(z)/q(z) and also prove that $\underset{z=z_0}{\text{Res}} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$. (7×2=14)

0

-3-

M 8161

Answer any three questions from the following five questions (weightage 3 each).

- 21. Prove that the square roots of $\sqrt{3} + i$ are $\pm \frac{1}{\sqrt{2}} \left(\sqrt{2 + \sqrt{3}} + i \sqrt{2 \sqrt{3}} \right)$.
- 22. If f(z) = u(x, y) + iv(x, y) and f'(z) exists at a point $z_0 = x_0 + iy_0$, then show that u and v satisfy the Cauchy-Riemann equations $u_x = v_y$ and $u_y = v_x$ at (x_0, y_0) .
- 23. If f(z) is analytic everywhere inside and on a simple closed curve C taken is positive sense, prove that $f'(z) = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s-z)^2} ds$, where z is interior to C.
- 24. State and prove Cauchy's integral formula.
- 25. If $z_n = x_n + iy_n$ (n = 1, 2, 3, ...) and z = x + iy, then show that $\lim_{n \to \infty} z_n = z$ if and only if $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$. (3×3=9)