DOTHER FEBRUAR

- MOTORS

Answer siny 6 questions. Each question carries 5 marks

26. Describe three types of Inolated singularities.

I serve to an analysis of the server of the

28 Evaluate the integral $\left[\frac{dz}{z(z-0)}\right]$ where C is the circle |z-2|=1 oriented in the

- COS 200 - COS

A - I'v I browne oh "Salado i "sanie" oh utauf i de

31 Evaluates 132 + 38 dz where C is any closed pain enclosing all

SE Show that the compound we - 1 maps circles and lines to circles and lines.

Thriotis is galagen terrolines to exemple to be northwest many oil a north T

d = Morrage

Answer any one question. It sames 10 mades (1x10=10

... 34. State and derive Caucity's Residue theorem.

a veloci

35 Using contour integration, prove that $\frac{1}{x}$ dx = $\frac{1}{x}$

K21U 0220

Reg. No. :

Name: 10 questions Easings horasup ribad. enotaeup 01 yran wwanA

VI Semester B.Sc. Hon's (Mathematics) Degree (Supple.)

Examination, April 2021 (2014-2015 Admissions)

BHM 604 : COMPLEX ANALYSIS - II

Time: 3 Hours

Max. Marks: 80

SECTION – A

Answer all questions. Each question carries 1 mark:

 $(10 \times 1 = 10)$

- 1. Find the residue at z = 1 of $f(z) = \frac{4}{1-z}$.
- 2. Define pole of a function.
- 3. Define Bilinear Transformations.
- 4. Define conformal mapping.
- 5. State Jordan's Lemma.
- 6. State Rouche's theorem.
- 7. Find the zeros of $f(z) = \sin \pi z$.
- 8. Show that $f(z) = e^z$ is conformal at all points z.
- 9. Define Residue at a singular point.
- 10. What are harmonic functions?

SECTION - B

Answer any 10 questions. Each question carries 3 marks :

(10×3=30)

- 11. Show that z = 0 is an essential singularity of $f(z) = e^{\frac{1}{z}}$.
- 12. Obtain the bilinear transformation which maps 1, 0, −1 on to the points i, ∞, 1 respectively.
- 13. Find the residue of $f(z) = \frac{\sinh z}{z^4}$ at z = 0.
- 14. Find the residue at the singular points of $f(z) = \cot z$.
- 15. Evaluate the improper integral $\int_{0}^{\pi} \frac{dx}{x^4 + 1}$.
- 16. Define winding number and find the winding number of $w = \frac{1}{z^2}$ around w = 0.
- 17. Find the fixed points of the transformation $w = \frac{z-1}{z+1}$.
- 18. Using Rouche's theorem, determine the number of roots of $z^7 4z^3 + z 1 = 0$ inside the circle |z| = 1.
- 19. Let two functions p and q be analytic at a point z_0 . If $p(z_0) \neq 0$, $q(z_0) = 0$ and $q'(z_0) \neq 0$, then show that z_0 is a simple pole of $\frac{p(z)}{q(z)}$ and $\underset{z=z_0}{\text{Res}} \frac{p(z)}{q(z)} = \frac{p(z)}{q'(z)}$.
- Find and sketch the region on to which the half plane y > 0 is mapped by the transformation w = (1 + i)z.
- 21. Obtain the harmonic conjugate of (x, y) = xy.
- 22. Define Isogonal mapping and give one example.
- 23. Find the angle of rotation and scale factor of $w = z^2$ at the point 1 + i.
- 24. Find the bilinear transformation which maps ∞, i, 0 to the points 0, i, ∞ respectively.
- 25. State why the transformation w = iz is a rotation in the z plane through the angle $\frac{\pi}{2}$. Also find the image of the infinite strip 0 < x < 1 under the transformation.

-3-

K21U 0220

SECTION - C

Answer any 6 questions. Each question carries 5 marks :

 $(6 \times 5 = 30)$

- 26. Describe three types of Isolated singularities.
- 27. Show that $\int\limits_{0}^{2\pi} \frac{d\theta}{1 + a \sin \theta} = \frac{2\pi}{\sqrt{1 a^2}} \,, \, -1 < a < 1.$
- 28. Evaluate the integral $\int_C \frac{dz}{z(z-1)^4}$ where C is the circle |z-2|=1 oriented in the counter clockwise direction.
- 29. Evaluate $\int_{0}^{\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$.
- 30. Evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$ around |z| = 3.
- 31. Evaluate $\int_C \frac{z \cosh \pi z}{z^4 + 13z^2 + 36} dz$ where C is any closed path enclosing all singularities and is oriented in the positive direction.
- 32. Show that the mapping $w = \frac{1}{z}$ maps circles and lines to circles and lines.
- 33. What do you mean by local inverse of a conformal mapping at a point?

SECTION - D

Answer any one question. It carries 10 marks:

 $(1 \times 10 = 10)$

- 34. State and derive Cauchy's Residue theorem.
- 35. Using contour integration, prove that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.