HHH	H	m	HII	IIII	ш	ш	m	m	
	Ш	Ш	Ш		Ш	Ш	Ш	ш	

K20U 0129

Reg. No.:....

Name :

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.)
Examination, April 2020
(2014 Admission Onwards)

CEL VILLIBRARY

CORE COURSE IN MATHEMATICS
6B12MAT : Complex Analysis

Time: 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Sketch the region $\{z : Re(iz) \ge 0\}$.
- 2. Define Harmonic function.
- 3. Find the Radius of convergence of ∑ 7"z".
- 4. Find the residue of $f(z) = e^z$ at z = 0.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- Give an example of a function which is differentiable exactly at one point and give its justification.
- 6. Verify Cauchy-Riemann equations for the function $f(z) = z^2$.
- 7. Evaluate $\int_{C} |z| dz$, where C is the line segment from origin to 1 + i.
- 8. Find the Radius of convergence of $\sum (1 + i)^n (z 3i)^n$.
- 9. Find the residue of $f(z) = \frac{9z+i}{z(z^2+1)}$ at z = i.

P.T.O.

10. Find the Laurent's series expansion of $f(z) = \frac{1}{z^5} \sin z$ with center 0.

- 11. State Taylors Theorem. Find the Taylors series expansion of $f(z) = \frac{1}{1+z^2}$ centered at z = 0.
- Give an example of a series which is convergent but not absolutely. Give justification.
- State Laplace's Equation. Give an example of a real valued function which satisfy Laplace's Equation on the complex plane.
- 14. State Cauchy's inequality.

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Prove that an analytic function of constant absolute value is constant in a domain.
- 16. Evaluate the following:

a)
$$\int_{0}^{1+1} z^{2} dz$$

b)
$$\int_{0}^{8-3\pi i} e^{\frac{z}{2}} dx$$

- 17. The power series $\sum a_n z^n$ converge at z = 1 and diverge at z = -1. Find the radius of convergence of $\sum a_n z^n$.
- 18. State and prove Residue Theorem.
- 19. Find an analytic function f(z) = u(x, y) + iv(x, y), where u(x, y) = xy.
- 20. State and prove the theorem of convergence of power series.

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. State and prove Cauchy Riemann equations.
- 22. a) Define singular point, isolated singular point, removable singular point, pole and essential singular point.
 - b) Give an example of a non-isolated singular point.
- 23. a) State and prove Cauchy's integral formula.
 - b) Evaluate $\int_{C} \frac{e^{z}}{z-2} dz$, where C is the circle |z| = 3.
- Give examples and justifications of power series having Radius of convergence 1 and
 - a) Which diverge at every point on the circle of convergence?
 - b) Which doesn't diverge at every point on the circle of convergence?