Answerding 2 que stone from among the questions 21 to 24. These questions carry

K18U 0123

Max. Marks: 48

Reg. No.:

Name :

VI Semester B.Sc. Degree (CBCSS-Reg/Supple/Imp.) Examination, May 2018
CORE COURSE IN MATHEMATICS
6B12 MAT : Complex Analysis
(2014 Admn. Onwards)

Time: 3 Hours

SECTION-A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Represent the complex number 1 + i in the exponential polar form.
- 2. Evaluate $\int_{8+\pi i}^{8-3\pi i} e^{Z/2} dz$.
- Show that the condition, the domain be simply connected, is quite essential in Cauchy's integral theorem.
- 4. When do we say that f has a singularity at a point z₀?

 $(1 \times 4 = 4)$

SECTION-B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Simplify $\frac{5i}{(1-i)(2-i)(3-i)}$ to a real number.
- 6. Determine whether the function f defined by

$$f(z) = \begin{cases} \frac{\operatorname{Re}(z^2)}{|z|^2} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$$
 is continuous at $z = 0$

7. Determine whether the function f defined by $f(z) = Im(z^2)$ is analytic.

P.T.O.

- 8. Show that $f(z) = \overline{z}$ does not have a derivative at any point.
- 9. Let $z_1 = -2 + 2i$ and $z_2 = 3i$. Find Arg $(z_1 z_2)$ and Arg (z_1/z_2) .
- 10. Evaluate $\int_{C}^{\overline{Z}} dZ$, C the parabola $y = x^2$ from -1 + i to 1 + i.
- 11. Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ is convergent or divergent.
- 12. Find the radius of curvature of the power series, $\sum_{n=0}^{\infty} \frac{n^n}{n!} (z+2i)^n$.
- 13. State Laurent's theorem.
- 14. Find the residues at the singular points of $\frac{z^4}{z^2 iz + 2}$. (2×8=16)

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Find all values of (-8i)1/3 and plot them.
- 16. Integrate $g(z) = \frac{z^2 + 1}{z^2 1}$ counterclockwise around the circle |z 1| = 1.
- 17. Show that if f is analytic inside and on a simple closed curve C and z_0 is not on C, then $\oint_C \frac{f'(z)}{z-z_0} dz = \oint_C \frac{f(z)dz}{(z-z_0)^2}$.
- 18. Show that $\text{Ln} \frac{1+z}{1-z} = 2\left(z + \frac{z^3}{3} + \frac{z^5}{5} + \dots\right)$.

-3-

K18U 0123

- 19. If a series $z_1 + z_2 + \ldots$ is given and we can find a convergent series $b_1 + b_2 + \ldots$ with non-negative real terms such that $|z_n| \le b_n$ for $n = 1, 2, \ldots$ then show that the given series converges absolutely.
- 20. Find the Laurent series of $\frac{e^z}{z(1-z)}$ that converges for 0 < |z-1| < R and determine the precise region of convergence. (4x4=16)

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. a) Is u = xy a harmonic function? If yes, find a corresponding analytic function f(z) = u(x, y) + iv(x, y).
 - b) Find the principal value of $(-1)^{1-2i}$.
- 22. a) Integrate $f(z) = z^{-2} \tan \pi z$ around any contour C enclosing 0 counter clockwise.
 - b) State and prove Morera's theorem.
- Develop cosh (z πi) in a Taylor series with πi as center. Find the radius of convergence.
- Evaluate the following integral counterclockwise.

$$\oint_C \frac{z - 23}{z^2 - 4z - 5} dz, C: |z - 2| = 4.$$
 (6x2=12)