		I more	

reso uarn

any subsector X. Thornwood and a

Prove that a fundion it is, bit and peoples to Pra, b) if and only it lot every it > 0.

regard exists y ... > 0 such that if P and D are any ladged partitions of (a, b) with

169	EG#	Popular
N. S.	T. LEBERT	(4)
IE!	8	
1	5 .	7

K16U 0201

Reg. No.:....

Name :

VI Semester B.Sc. Degree (CCSS - Reg./Supple./Improve.) Examination, May 2016 Core Course in Mathematics 6B10 MAT: ANALYSIS AND TOPOLOGY

Time: 3 Hours	Max. Weightage.: 3

- 1. Fill in the blanks:
- a) The radius of convergence of the power series $\sum \frac{x^n}{n}$ is ______
 - b) Let $A \subseteq R$ and $\phi: A \to R$ is bounded on A. Then the uniform norm of ϕ on A is
 - c) Let F, G be differentiable on [a, b] and let f = F' and g = G' belongs to R[a, b]. Then Ja fG =_
 - d) Let X be an arbitrary metric space and A ⊆ X. Then Int (A) = _____ (Weightage 1)

Answer any six from the following.

(Weightage 1 each)

- 2. Prove the every constant function on [a, b] is R [a, b].
- 3. Evaluate $\int_{-\sqrt{t}}^{4} \frac{\sin \sqrt{t}}{\sqrt{t}} dt$.
- 4. Let $G(x) = x^n (1 x)$ for $x \in A = [0, 1]$. Prove that the convergence of $\{G(x)\}$ to 0 is uniform on A. R = x ver 0 = 10 + xr\mie mil (c).

- 5. Define uniform convergence of a series of functions $\sum f_n$.
- 6. Define closed sphere in a metric space X. Give an example.
- 7. Give an example of two subsets A and B of the real line such that $(A \cup B) \neq Int(A) \cup Int(B)$.
- Let (X, d) be a metric space and A ⊆ X. Define the closure of A. Prove that A is closed if and only if A = A.
- Let T₁ and T₂ be two topologies in a non-empty set X and show that T₁ ∩ T₂ is also a topology on X.
- Let X be a topological space and let X ⊆ X. Define the boundary of A and prove that it is a closed set. (Weightage 6×1=6)

Answer any seven from the following.

(Weightage 2 each)

- 11. If $f \in R[a, b]$, then prove that f is bounded on [a, b].
- 12. If $f: [a, b] \rightarrow R$ is monotone on [a, b] then prove that $f \in R[a, b]$.
- 13. Prove that a sequences (f_n) of bounded functions on $A \subseteq R$ converges uniformly on A to f if and only if $||f_n f||_A \to 0$.
- 14. Let R be the radius of convergence of ∑a_nxⁿ and K be a closed and bounded interval contained in the interval convergence (− R, R). Then prove that the power series converges uniformly on K.
- 15. State and prove Dini's theorem.
- 16. Prove that

(a)
$$\lim \left(\frac{x^2 + nx}{n}\right) = x \text{ for } x \in R.$$

(b)
$$\lim \left(\frac{\sin(nx+n)}{n}\right) = 0 \text{ for } x \in R.$$

K16U 0201

- 17. Let X be a topological space and A an arbitrary subset of X. Then prove that
 \$\overline{A}\$ = {x : each neighbourhood of x intersects A}.
- Let X be a topological space and A a subset of X. Then prove that (i) A = A ∪ D (A) (ii) A is closed if and only if A ⊇D (A).

-3-

- 19. Prove that a closed subspace of complete metric space is complete.
- Let X be a metric space. Then prove that any intersection of closed sets in X is closed. (Weightage 7x2=14)

Answer any three from the following.

(Weightage 3 each)

- 21. Let X be a complete metric space and let $\{F_n\}$ be a decreasing sequence of non-empty closed subsets of X such that $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point.
- 22. State and prove Kuratowski's closure axioms on a topological space X.
- 23. Prove that a function f: [a, b] → R belongs to R[a, b] if and only if for every ∈ > 0, there exists y_∈ > 0 such that if P and Q are any tagged partitions of [a, b] with ||P|| < y_∈ and ||Q|| < y_∈, then |S(f,P) S(f,Q)| < ∈.</p>
- 24. Let (f_n) be a sequence of functions in R[a, b] and suppose that $\{f_n\}$ converges uniformly on [a, b] to f. Then prove that $f \in R[a, b]$.
- 25. State and prove Fundamental Theorem of Calculus (Second form). (Weightage 3x3=9)