	arate a	19861	118.0	BIRTH.	1901
ш	ш	100	ш		ш
ш	ш	1881	ш	1111	ш
ш	ш	100	ш	Ш	ш

M 7149

Reg. No.:....

lame :

V Semester B.Sc. Degree (CCSS – Reg./Supple./Imp.)
Examination, November 2014
CORE COURSE IN MATHEMATICS
5B06 MAT : Real Analysis

me: 3 Hours	Max. Weightage: 30

- 1. Fill in the blanks:
 - a) The set of all $x \in \mathbb{R}$ that satisfy $|4x-5| \le 3$ is _____
 - b) The ε-neighbourhood of a ∈ IR is _____

c) Sup
$$\left\{1 - \frac{(-1)^n}{n} : n \in \mathbb{N}\right\} = \underline{\hspace{1cm}}$$

d) Every nonempty subset of IR that has _____ has a supremum in IR. (Wt. 1)

Answer any six questions from the following (weightage one each):

- 2. If a is a real number such that $0 \le a < \epsilon$ for $\epsilon > 0$, then show that a = 0.
- 3. State and prove the triangle inequality.
- 4. Prove that a sequence in IR can have at most one limit.
- 5. Using the definition of limit of a sequences prove that $\lim \left(\frac{3n+2}{n+1}\right) = 3$.
- 6. If $X=(x_n)$, $Y=(y_n)$ and $Z=(z_n)$ are sequences of real numbers such that $x_n \le y_n \le z_n$ for all $n \in \mathbb{N}$ and if $\lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (z_n)$, show that $Y=(y_n)$ is convergent and $\lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (y_n) = \lim_{n \to \infty} (z_n)$.

- 7. Prove that any convergent sequence of real numbers is a Cauchy sequence.
- 8. Prove that any absolutely convergent series in IR is convergent.
- If I is an interval, f: I → IR is continuous on I and if f(a) < k < f(b), where a, b ∈ I, k ∈ IR, then show that there exists a point c ∈ I between 'a' and 'b' such that f(c) = k.
- If f: A → IR, where A ⊆ IR, is a Lipschitz function, prove that f is uniformly continuous.
 (6×1=6)

Answer any seven questions from the following (weightage 2 each):

- 11. If $x \in \mathbb{R}$, show that there exists some $n_x \in \mathbb{N}$ such that $x < n_x$.
- 12. Prove that the set $\{x \in \mathbb{R} : 0 \le x \le 1\}$ is not countable.
- 13. If $X = (x_n : n \in \mathbb{N})$ is a sequence of real numbers and $m \in \mathbb{N}$, prove that the m-tail $X_m = (x_{m+n} : n \in \mathbb{N})$ converges if and only if X converges.
- 14. Prove that a convergent sequence is bounded.
- 15. Prove that the sequence ((-1)ⁿ) is divergent.
- 16. Show that the series $\sum_{p=1}^{\infty} \frac{1}{n^p}$ is convergent when p > 1.
- 17. If $X = (x_n)$ is a decreasing sequence with $\lim(x_n) = 0$ and if the partial sums (S_n) of Σy_n are bounded, prove that the series $\Sigma x_n y_n$ converges.
- 18. If I = [a, b] is a closed bounded interval and if f: I → IR is continuous on I, prove that f is bounded on I.

- If f: I → IR is continuous on I, where I is an interval, show that f(I) is an interval.
- 20. If $f: I \to IR$ is increasing on I, where $I \le IR$ is an interval, prove that

$$\lim_{x\to c^-} f = \sup \left\{ f(x) : x \in I, x < c \right\},\$$

where $c \in I$ is not an end point of I.

 $(7 \times 2 = 14)$

Answer any three questions from the following (Weightage 3 each):

- 21. Show that there exists a positive real number x such that $x^2 = 2$.
- 22. If S is a subset of IR that contains at least two points and has the property that [x, y] ⊆ S whenever x, y ∈ S with x < y, prove that S is an interval.</p>
- Prove that a monotone sequence of real numbers is convergent if and only if it is bounded.
- 24. If I= [a, b] is a closed bounded interval that if f: I → IR is continuous on I, prove that f has an absolute maximum and an absolute minimum on I.
- 25. State and prove the continuous inverse theorem.

 $(3 \times 3 = 9)$