over any tisker questions from the following (Weighage 3 agent).	
If S is a subset of IR that contains alleast two points and has the property that $ x,y \leq S$ whenever $x,y \in S$ with $x < y$ then prove that S is an interval.	
Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence	

Name :

M 9812

V Semester B.Sc. Degree (CCSS – Reg./Supple./Imp.)
Examination, November 2015
CORE COURSE IN MATHEMATICS
5B06 MAT : Real Analysis

3,47676	ili rhamax seemim ianoist e i	eithe for each ment tarb ten 12	
Time: 3 Hours	numbers is not countain.	Max. Weightage	9:3
Fill in the blanks.			
a) The set of all x	$\in \mathbb{R}$ that satisfy $ x^2-1 \le 3$ is	n g. m. white x e. K. show th	
b) If $x \in V_{\varepsilon}(a)$ for	a∈ IR and for every ε>0, th	en x = 19 (M = 12 ,	
c) $\inf \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} =$	numbers converges to a real X also co quesqual to b.	i. It a sequence $X = (x_n)$ of real of any subsequences $X' = (x_n)$ of	
d) Every non-emp	oty subset of IR that has	has an infimum in IR. (W	= '

- Answer any six questions from the following (Weightage one each).
- 2. If y > 0, show that there exist some $n_y \in N$ such that $n_y 1 \le y \le n_y$.
- 3. If $a, b \in \mathbb{R}$, prove that $|a|-|b| \le |a-b|$.
- 4. Prove that a sequence in IR can have at most one limit.
- 5. If $X = (x_n)$ is a convergent sequence of real numbers and if $x_n \ge 0$ for all $n \in \mathbb{N}$, show that $x = \lim_{n \to \infty} (x_n) \ge 0$.
- 6. Prove that $\lim \left(\frac{\sin n}{n}\right) = 0$.
- 7. Show that the sequence (Yn) is a Cauchy sequence.
- 8. State the Ratio test and Raabe's test for the convergence of a series.

P.T.O.

M 9812

- If I is an interval, f: I → IR is continuous on I and if f(a) < k < f(b), a, b ∈ I, k ∈ IR, show that there exists a point c∈I between 'a' and 'b' such that f(c) = k.
- 10. If $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$, is uniformly continuous on A and if (x_n) is a Cauchy sequence in A, prove that $(f(x_n))$ is a Cauchy sequence in \mathbb{R} . (6x1=6)

Answer any seven questions from the following (Weightage 2 each).

- 11. Show that there does not exist a rational number x such that $x^2 = 2$.
- 12. Prove that the set IR of all real numbers is not countable.
- 13. If (x_n) is a sequence of real numbers, (a_n) is a sequence of positive real numbers with $\lim (a_n) = 0$ and if for some constant c > 0 and $m \in \mathbb{N}$, $|x_n x| \le C.a_n$, for $n \ge m$, where $x \in \mathbb{R}$, show that $\lim (x_n) = x$.
- 14. If $X = (x_n : n \in \mathbb{N})$ is a sequence of real numbers and $m \in \mathbb{N}$, show that the m-tail $X_m = (x_{m+n} : n \in \mathbb{N})$ of X converges if and only if X converges.
- 15. If a sequence X = (x_n) of real numbers converges to a real number x, prove that any subsequence X'=(x_n) of X also converges to x.
- 16. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.
- If X = (x_n) is a convergent monotone sequence and if the series ∑y_n is convergent, prove that series ∑x_ny_n is convergent.
- 18. If I = [a, b] is a closed bounded interval and if f: I → IR is continuous on I, prove that the set f (I) = {f (x) : x ∈ I} is a closed, bounded interval.
- If I is a closed bounded interval and if f: I → IR is continuous on I, prove that f is uniformly continuous on I.
- 20. If $f: I \to \mathbb{R}$ is increasing on I, where $I \subseteq \mathbb{R}$ is an interval, prove that

 $\lim_{x\to c^-} f = \sup \{f(x) : x \in I, x < c\}, \text{ where } c \in I \text{ is not an end point of } I.$ (7x2=14)

Answer any three questions from the following (Weightage 3 each).

- 21. If S is a subset of IR that contains atleast two points and has the property that $[x, y] \subseteq S$ whenever $x, y \in S$ with x < y, then prove that S is an interval.
- 22. If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ is a nested sequence of closed bounded intervals, prove that there exist a number $\zeta \in \mathbb{R}$ such that $\zeta \in I_n$ for all $n \in \mathbb{N}$.
- Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
- 24. If I = [a, b] is a closed bounded interval and if f: I → IR is continuous on I, prove that f has an absolute maximum and an absolute minimum on I.
- 25. State and prove the continuous inverse theorem.

(3x3=9)