

K20U 1290

Reg. No.:....

Name :

III Semester B.Sc. Degree (CBCSS – Sup./Imp.) Examination, November 2020 (2014 – '18 Admns.)

COMPLEMENTARY COURSE IN MATHEMATICS 3C03MAT – PH : Mathematics for Physics and Electronics – III

Time: 3 Hours Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each :

- 1. Verify that $y = cx^3$ is a solution of xy' = 3y.
- Check the linear independence of sin 2x and cos 2x.
- 3. Define Dirac delta function.
- 4. Examine whether f(x) = |x| is odd, even or neither odd nor even. (4×1=4)

SECTION - B

Answer any 7 questions from among the 5 to 13. These questions carry 2 marks each :

- 5. Solve $y' = (1 + x) (1 + y^2)$.
- 6. Represent the family of curves xy = c by differential equation.
- 7. Find the integrating factor of $y' + y \tan x = \cos^3 x$.
- 8. Solve $y'' + 4y = \sin 3x$.
- 9. Using the definition, find the Laplace transform of $\sin \omega t$.
- 10. Find the inverse Laplace transform of $\frac{e^{-3s}}{(s-1)^4}$

K20U 1290

- 11. Verify that $u = x^2 y^2$ is a solution of the two dimensional Laplace equation $u_{xx} + u_{yy} = 0$.
- 12. Solve $u_{xx} u_{yy} = 0$.

13. Find
$$a_0$$
 of the Fourier series of $f(x) = x + x^2$, $-\pi < x < \pi$. (7×2=14)

SECTION - C

Answer any 4 questions from among the 14 to 19. These questions carry 3 marks each :

- 14. Solve the initial value problem y' + 5y = 20; y(0) = 2.
- 15. Find the Fourier series expansion of f(x) = 2x, -1 < x < 1.
- 16. Use the method of reduction of order to solve $x^2y'' 5xy' + 9y = 0$, given that $y = x^3$ is a solution.
- 17. Using convolution, find the inverse Laplace transform of $\frac{1}{s^2(s-1)}$.
- 18. Solve y'' 3y' + 2y = 4x.
- 19. Find a solution u(x, y) of the equation $y^3u_x + x^2u_y = 0$ by separating variables. (4×3=12)

SECTION - D

Answer any 2 questions from among the 20 to 23. These questions carry 5 marks each :

- 20. Find the orthogonal trajectories of the family of parabolas $y = cx^2$.
- 21. Find a second order homogeneous linear differential equation for which x² and x² lnx are solutions.
- 22. Solve using Laplace transform y'' + y = t, y(0) = 1, y'(0) = -2.

23. Find the Fourier series of
$$f(x) = \begin{cases} 1 & \text{if } -\pi < x < 0 \\ -1 & \text{if } 0 < x < \pi \end{cases}$$
 (2x5=10)