CEL -ALUBRARY A

K18U 1477

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.)
Examination, November 2018
(2014 Admn. Onwards)
CORE COURSE IN MATHEMATICS

5B07 MAT-Differential Equations, Laplace Transform and Fourier Series

Time: 3 Hours Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each. (4×1=4)

- 1. Solve $y' + 3x^2y^2 = 0$.
- 2. Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$
- 3. Define even function. If f(x) is an even function, show that $\int_{-L}^{L} f(x) dx = 2 \int_{0}^{L} f(x) dx.$
- 4. Let f(x) is a p periodic function. Show that f(x) is np periodic for n = 2, 3, ...

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each. (8×2=16)

- 5. State existence and uniqueness theorem for the initial value problem y' = f(x, y) $y(x_0) = y_0$.
- Show that e^x is an integrating factor of the differential equation sinydx + cosydy = 0 and hence solve it.
- Define Wronskian of two functions f, g. Show that if f, g are linearly dependent then W(f, g) = 0.

P.T.O.

8. Find the general solution of $x^2y'' + xy' + y = 0$.

9. Solve
$$y'' + 2ky' + (k^2 + 4) y = 0$$
.

10. Solve
$$y'' - 3y' + 2y = 2e^x + 6e^{2x}$$
.

11. Find the inverse Laplace transform of
$$\frac{s-4}{s^2+4}$$
.

12. Find the Laplace transform of coshat

13. Find the Fourier integral representation of the function
$$f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$$

14. If L(f) denote the Laplace transform of the function f(x). Show that $L(f_1 + f_2) = L(f_1) + L(f_2)$, L(cf) = cL(f).

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each. (4x4=16)

15. Find the general solution of the differential equation y' + xy = 4x.

16. Verify that $-\frac{1}{2}e^x \sin x$ is a solution of the differential equation $(D^2 - 4D + 4)y = e^x \cos x$ and find a general solution.

17. Find the inverse transform of the function $\ln \left(1 + \frac{\omega^2}{s^2}\right)$

18. If L(f) denote the Laplace transform of the function f(x). Find f such that $L(f) = \frac{s}{\left(s+1\right)^2}.$

19. Find the Fourier series of the function

$$f(x) = \begin{cases} 0 & \text{if } -2 < x < -1 \\ k & \text{if } -1 < x < 1 \\ 0 & \text{if } 1 < x < 2 \end{cases}$$

20. Find the Fourier coefficients of the 2π periodic function defined by $f(x) = x + |x|, -\pi < x < \pi.$

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each. (2×6=12)

- 21. Find the orthogonal trajectories of the family of curves xy = c.
- 22. Solve the initial value problem

$$y'' - 3y' + 2y = 12x^2 + 6x^3 - x^4$$
, $y(0) = 4$, $y'(0) = -8$.

23. Using Laplace transform solve the integral equation

$$y = 2t - 4\int_{0}^{t} y(\tau)(t - \tau)d\tau.$$

24. Find the Fourier series of the following periodic function f(x) of period p = 2L defined by $f(x) = x + x^2, -1 < x < 1$.