100000	101 101	BIE I	m	1981 811	T TREET	en ne	
		Ш	Ш				

CEL -OF THE COLLEGE

K1	6	U	1	5	7	4
----	---	---	---	---	---	---

Reg. No. :	16/2	1)
lame :		

V Semester B.Sc. Degree (CCSS-Supple./Imp.)
Examination, November 2016
CORE COURSE IN MATHEMATICS
5B07 MAT : Abstract Algebra
(2013 and Earlier Admissions)

Time: 3 Hours Max. Weightage: 30

- 1. Mark each of the following true or false:
 - a) A binary operation on a set S may assign more than one element of S to some ordered pairs of elements of S.
 - b) In every cyclic group, every element is a generator.
 - c) Every group is a subgroup of itself.
 - d) Z, is a cyclic group.

(Wt.1)

Answer any six questions from the following (Weightage one each):

- 2. If S is the set of all real numbers of the form $a+b\sqrt{2}$, where $a,b\in \mathbb{Q}$ are not simultaneously zero, show that S is a group under usual multiplication of real numbers.
- If G is a group with binary operation *, prove that (a*b)'=b'*a', for all a, b ∈ G, where a' is the inverse of a.
- 4. Define orbit of a permutation and find the orbits of the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix}$$

- 5. Prove that every permutation σ of a finite set is a product of disjoint cycles.
- 6. Prove that every group of prime order is cyclic.

P.T.O.

K16U 1574

- If H is a normal subgroup of a group G, show that the cosets of H in G forms a group under the binary operation (aH) (bH) = (ab) H.
- 8. Prove that a factor group of a cyclic group is cyclic.
- 9. Solve the equation $x^2 5x + 6 = 0$ in \mathbb{Z}_{12} .
- 10. Show that \mathbb{Z}_p is a field, if p is a prime.
- 11. If R is a ring with unity and if n.1=0 for some $n \in \mathbb{Z}^+$, then show that the smallest such n is the characteristic of R. (6x1=6)

Answer any seven questions from the following (weightage 2 each)

- 12. If G is a group show that (a * b)' = a' * b' if and only if a * b = b * a, for a, b ∈ G, where a' is the inverse of a.
- 13. If G is a group and $a \in G$, show that $H = \{a^n/n \in \mathbb{Z}\}$ is the smallest subgroup of G that contains 'a'.
- 14. Find all subgroups of \mathbb{Z}_{18} .
- 15. If H is subgroup of a finite group G, then prove that order of H is a divisor of order of G. Also prove that the order of an element of a finite group divides the order of the group.
- 16. Obtain the group of symmetries of a square with vertices 1, 2, 3 and 4.
- 17. Define a homomorphism of a group G into a group G'. If $\phi: G \to G'$ is a homomorphism of a group G onto a group G' and if G is abelian, show that G' is also abelian.
- 18. If H is a normal subgroup of a group G, prove that the map $\gamma: G \to G/H$ defined by $\gamma(x) = x H$, is a homomorphism with Kernel H.
- Prove that the cancellation law hold in a ring R if and only if R has no zero divisors.
- 20. Show that every field is an integral domain.
- 21. Show that n³³—n is divisible by 15.

 $(7 \times 2 = 14)$

3 K16U 1574

Answer any three questions from the following (Weightage 3 each)

- 22. Prove that a subgroup of a cyclic group is cyclic.
- 23. If G and G' are groups and if $\varphi : G \to G'$ is one-to-one such that $\varphi (xy) = \varphi (x) \varphi (y)$, show that $\varphi (G)$ is a subgroup of G'.
- 24. Prove that the collection of all even permutations of $\{1, 2, ..., n\}$ $n \ge 2$, forms a subgroup of order n!/2 of the symmetric group S_n .
- 25. Prove that a subgroup H of a group G is a normal subgroup of G if and only if gH=Hg for all g ∈ G.
- 26. Show that every finite integral domain is a field.

 $(3 \times 3 = 9)$