c.d., show that the other case relatively points to o				
hodestquium ont and bru			other sharpers of the	
	omorphism theore	nor temperating		
of unity if Filters no delegan	mat A gam a man	oders in laws he	report test reco	
ai Fi I yino bisa li 19 gaz a			Selve Selbertz Acon Avantament	
Hold 25, that are their own				

ematic.	m	mr	HEE	men	FREE	BINS	BIII	DIS ITT	1
	ш	ш	ш	m	ш	ш	ш		1
CE CE CO	881	H	1888		HEIR	Bills	BILE	RIGHTS	

Reg. No.:

CEL VALLIBRARY

K17U 1696

V Semester B.Sc. Degree (CBCSS - Reg./Sup./Imp.)
Examination, November 2017
(2014 Admn. Onwards)
CORE COURSE IN MATHEMATICS
5B06 MAT: Abstract Algebra

Time: 3 Hours Max. Marks: 48

SECTION-A

Answer all the questions. Each question carries one mark.

- Find the number of elements in the cyclic subgroup of Z₃₀ generated by 25.
- 2. What are the orbits of the identity permutation σ of a set A?
- 3. How many homomorphisms are there of $\mathbb Z$ onto $\mathbb Z$?
- 4. What are the units in $\mathbb{Z} \times \mathbb{Z}$?

 $(4 \times 1 = 4)$

SECTION-B

Answer any 8 questions. Each question carries two marks.

- 5. Show that every permutation of a finite set is a product of disjoint cycles.
- 6. Let H be a subgroup of a finite group G. Show that the order of H is a divisor of the order of G.
- 7. Show that if σ is a cycle of odd length, then σ^2 is a cycle.
- 8. Find all cosets of the subgroup $\langle 2 \rangle$ of \mathbb{Z}_{12} .
- 9. Express the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}$ as a product of disjoint cycles and then as a product of transpositions.

P.T.O.

- 11. Show that any group homomorphism $\phi: G \to G'$ where |G| is a prime must either be the trivial homomorphism or a one-to-one map.
- 12. Show that in the ring \mathbb{Z}_n , the divisors of 0 are precisely those nonzero elements that are not relatively prime to n.
- 13. Show that every finite integral domain is a field.
- 14. If $a \in \mathbb{Z}$ and p is a prime not dividing a, show that p divides $a^{p-1} 1$. (8×2=16)

SECTION-C

Answer any 4 questions. Each question carries four marks.

- 15. Show that every subgroup of a cyclic group is cyclic.
- 16. State and prove Lagrange's theorem. Deduce that the order of an element of a finite group divides the order of the group.
- 17. Let G and G' be groups and let φ: G→G' be a one-to-one function such that φ(xy) = φ(x)φ(y) for all x, y ∈ G. Show that φ[G] is a subgroup of G' and φ provides an isomorphism of G with φ[G].
- 18. Let $\phi: G \to H$ be a group homomorphism. Show that $\phi[G]$ is abelian if and only if for all $x, y \in G$ we have $xyx^{-1}y^{-1} \in Ker(\phi)$.
- 19. Describe all ring homomorphisms of \mathbb{Z} into $\mathbb{Z} \times \mathbb{Z}$.
- 20. Find all solutions of the congruence $15x = 27 \pmod{18}$. (4x4=16)

K17U 1696

SECTION - D

Answer any 2 questions. Each question carries six marks.

- 21. If a is a generator of a finite cyclic group G of order n, show that the other generators of G are the elements of the form a^r, where r is relatively prime to n.
- List the elements of the symmetric group S₃ on 3 letters and form the multiplication table for S₃. Find all subgroups of S₃.
- 23. State and prove the fundamental homomorphism theorem.
- 24. a) Show that the cancellation laws hold in a ring R if and only if R has no divisors of 0.
 - b) Show that $a^2 b^2 = (a + b) (a b)$ for all a and b in a ring R if and only if R is commutative.
 - c) Show that 1 and p 1 are the only elements of the field \mathbb{Z}_p that are their own multiplicative inverse. (2×6=12)