

K20U 1533

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Reg./Sup./Imp.)

Examination, November 2020
(2014 Admn. Onwards)

CORE COURSE IN MATHEMATICS
5B06MAT : Abstract Algebra

Time: 3 Hours Max. Marks: 48

SECTION - A

Answer all the questions each question carries 1 mark :

- On Z⁺, define * by letting a * b = a^b. Find (2 * 2)* 3.
- 2. What is the order of dihedral group D₄?
- 3. Let G be a group and let $\phi: G \to G$ by $\phi(g) = g^{-1}$. Is ϕ a homomorphism?
- 4. Find the number of zero divisors of the ring \mathbb{Z}_6 . (4×1=4)

SECTION - B

Answer any eight questions each question carries 2 marks :

- State and prove the left cancellation law of groups.
- 6. Find the remainder when 61 is divided by 7.
- 7. Compute $\tau\sigma^2$, where $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix}$.
- 8. Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix}$ into product cycles and transpositions.
- 9. Write all the left cosets of $4\mathbb{Z}$ of \mathbb{Z} .

K20U 1533

- Prove that a group homomorphism φ: G → G' is one-to-one map if and only if Ker (φ) = {e}.
- 11. Find the order of $5 + \langle 4 \rangle$ in $\mathbb{Z}_{12}/\langle 4 \rangle$.
- 12. Let R be a ring with additive identity 0. Show that (-a) (-b) = ab, for any a, b \in R.
- Define characteristic of a ring and give an example of a ring with characteristic 59.
- 14. Find all solutions of $2x \equiv 6 \pmod{4}$.

 $(8 \times 2 = 16)$

SECTION - C

Answer any four questions each question carries 4 marks :

- 15. Prove that subgroup of a cyclic group is cyclic.
- Show that every permutation on a finite set is a product of disjoint cycles.
- 17. State and prove Lagrange's theorem.
- 18. Show that a subgroup H of G is a normal subgroup if and only if $ghg^{-1} \in H$, for all $g \in G$ and $h \in H$.
- 19. Prove that every field is an integral domain.
- 20. If $a \in \mathbb{Z}$ and p is a prime not dividing a. Show that p divides $a^{p-1} 1$. (4x4=16)

SECTION - D

Answer any two questions each question carries 6 marks :

- 21. Let G be a cyclic group with n elements and generated by a. Let b ∈ G and let b = a^s. Prove that b generates a cyclic subgroup H of G containing n/d elements.
- 22. Prove that every group is isomorphic to a group of permutation.
- 23. State and prove the fundamental homomorphism theorem.
- 24. Let m be a positive integer and let a, b ∈ Z_m. Let d be the gcd of a and b. Prove that the equation ax = b has a solution in Z_m if and only if d divides b. (2x6=12)