PAR

K20U 1554

Reg. No.:....

Name :

V Semester B.Sc. Degree (CBCSS – Reg./Sup./Imp.)

Examination, November 2020
(2014 Admn. Onwards)

CORE COURSE IN STATISTICS
5B06STA: Mathematical Analysis – I

Resolution of x market 12

Time: 3 Hours

Max. Marks: 48

Instruction: Use of Calculators and Statistical Tables are permitted.

PART – A (Short Answer)

Answer all the questions:

 $(6 \times 1 = 6)$

- 1. Define limit of a sequence.
- 2. Determine the bounds of the sequence $\{1 (-1)^n\}n$ is a positive integer.
- 3. State Cauchy's root test.
- 4. Define continuity of a function at a point.
- 5. Find $\lim_{x \to \infty} \frac{x^2 3x + 2}{3x^2 1}$.
- 6. Check the differentiability of the function f(x) = |x| at the point x = 0.

PART – B (Short Essay)

Answer any seven questions:

 $(7 \times 2 = 14)$

- 7. Show that every convergent sequence is bounded.
- 8. Find $\lim_{x \to 0} \frac{e^{3x} 1}{x}$.

P.T.O.

K20U 1554

- 9. Define a Cauchy's sequence.
- Distinguish between absolute and conditional convergence.
- 11. Test the convergence of the infinite series whose n^{th} term is $\frac{1.2.3...n}{7.10...(3n+4)}$.
- 12. What are the different types of discontinuities ? Explain.
- 13. Show that the function $f(x) = \begin{cases} x, & \text{when } x \text{ is rational} \\ 0, & \text{when } x \text{ is irrational} \end{cases}$ is discontinuous at every point.
- 14. Expand ex using Maclaurins theorem.
- 15. State Darboux's theorem.

Answer any four questions:

 $(4 \times 4 = 16)$

- 16. If {a,} and {b,} are two sequences with limits a and b respectively, show that $\lim(a_a + b_a) = a + b$.
- 17. Show that the sequence $\{b_n\}$ where $b_n = \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2}\right]$ converges to zero.
- 18. Test for the convergence of the series with nth term $(n^3 + 1)^{\frac{1}{10}} n$, using comparison test.
- 19. Show that limit of a function is unique.
- 20. Show that uniform continuity of a function implies continuity.
- 21. Discuss the validity of Rolle's theorem for the function $f(x) = 2x^4 + 3x^2 1$ defined in [-2, 2].

K20U 1554

PART - D (Long Essay)

-3-

Answer any two questions:

 $(2 \times 6 = 12)$

22. Evaluate :

a)
$$\lim_{n \to \infty} \left(1 \cdot \frac{2}{1} \cdot \frac{3}{2} \dots \frac{n}{n-1} \right)^{\frac{1}{n}}$$

b)
$$\lim_{n\to\infty} \frac{1+2+3+...+n}{n^2}$$
.

- 23. Show that every absolutely convergent is convergent. Discuss the convergence of $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ...$
- 24. Prove that if a function is continuous in a closed interval it is bounded therein.
- 25. State and prove Lagrange's mean value theorem. Examine the theorem for the function $f(x) = \log x$ on $\left| \frac{1}{2}, 2 \right|$