Bottle: Xniam and its musical and both to



K18U 0503

Reg. No. : .....

Name : .....

II Semester B.Sc. Degree (C.B.C.S.S. – Reg./Supple./Improv.)
Examination, May 2018
COMPLEMENTARY COURSE IN MATHEMATICS
2C02 MAT-CH: Mathematics for Chemistry II
(2014 Admn. Onwards)

Time: 3 Hours Max. Marks: 40

## SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Write down the value of  $\int_0^{\pi/2} \cos^8 x dx$ .
- 2. What is the area bounded by the ellipse  $x^2/a^2 + y^2/b^2 = 1$ ?
- 3. Evaluate  $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ .
- 4. State the Cayley-Hamilton theorem.

 $(1 \times 4 = 4)$ 

## SECTION-B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the value of  $\int_0^3 \sqrt{\frac{x^3}{3-x}} dx$ .
- 6. Find the volume of the solid generated by rotating completely about x-axis the area enclosed between  $y^2 = x^3 + 5x$  and the lines x = 2 and x = 4.

## K18U 0503



7. Find the surface generated by the revolution of an arc of the catenary  $y = c \cosh$ 

 $\frac{x}{c}$  about the axis of x.

- 8. Evaluate  $\iint_A xy \, dx \, dy$  over the positive quadrant of the circle  $x^2 + y^2 = a^2$ .
- 9. Give examples of (i) symmetric and (ii) skew-symmetric matrices.
- 10. Solve the following system:

$$2x - y + 3z = -1$$
  
 $-4x + 2y - 6z = 2$ 

11. If  $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$ , find  $A^2$  using Cayley-Hamilton theorem.

12. Consider the matrix  $A = \begin{bmatrix} -1 & 3 & -1 & 1 \\ -3 & 5 & 1 & -1 \\ 10 & -10 & -10 & 14 \\ 4 & -4 & -4 & 8 \end{bmatrix}$ . If one eigenvector is

 $v = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T$ , find its eigenvalue  $\lambda$ .

13. Do there exist nonsingular skew-symmetric  $n \times n$  matrices with odd n? Justify. (2×7=14)

## SECTION-C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Obtain the intrinsic equation of the cycloid  $x = a(\theta + \sin \theta)$ ,  $y = a(1 \cos \theta)$ , the fixed point being the origin.
- 15. Find the whole length of the astroid  $x^{2/3} + y^{2/3} = a^{2/3}$ .
- 16. Evaluate  $\int_0^4 \int_0^{2\sqrt{z}} \int_0^{\sqrt{4z-x^2}} dz dx dy$ .



K18U 0503

17. Find the rank and a basis for the row space and for the column space of the

matrix, 
$$\begin{bmatrix} 0 & 0 & -7 & 1 \\ 0 & 0 & 5 & 0 \\ -7 & 5 & 0 & 2 \\ 1 & 0 & 2 & 0 \end{bmatrix}$$

18. Use Crammers rule to solve :

$$3x_1 + 4x_2 - 3x_3 = 5$$
  
 $3x_1 - 2x_2 + 4x_3 = 7$   
 $3x_1 + 2x_2 - x_3 = 3$ 

19. Find the spectrum of the matrix 
$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. (3x4=12)

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. Find the area common to the circle  $r = a\sqrt{2}$  and  $r = 2a\cos\theta$ .
- 21. Find the surface of the solid generated by revolution of the curve  $x^2 + 4y^2 = 16$  about the x axis.
- 22. Find the inverse of the matrix  $\begin{bmatrix} 1 & 2 & 5 \\ 0 & -1 & 2 \\ 2 & 4 & 11 \end{bmatrix}$ , by Gauss-Jordan elimination.

23. Diagonalize the matrix 
$$\begin{bmatrix} 7.3 & 0.2 & -3.7 \\ -11.5 & 1.0 & 5.5 \\ 17.7 & 1.8 & -9.3 \end{bmatrix}$$
 (5×2=10)