	THE RESERVE AND THE PARTY OF TH	

K16U 1223

Reg. No.:....

II Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.) Examination, May 2016 COMPLEMENTARY COURSE IN MATHEMATICS 2C02 MAT-CH: Mathematics for Chemistry - II (2014 Adm. Onwards)

Time: 3 Hours

Max. Marks: 40

SECTION-A

All the first 4 questions are compulsory. They carry 1 mark each :

- 2. Define the null space of a matrix.
- 4. State the Cayley-Hamilton theorem.

SECTION-B

Answer any 7 questions from among the questions 5 to 13. They carry 2 marks each.

- 5. Evaluate $\int (\cos 2\theta)^{3/2} \cos \theta d\theta$.
- 6. Find the area bounded by the ellipse $x^2/a^2 + y^2/b^2 = 1$.
- 7. Find the length of the curve $y = \log \{(e^x 1)/(e^x + 1)\}$ from x = 1 to x = 2.
- 8. Find the volume of the solid obtained by revolving one arc of the cycloid $x = a(\theta + \sin\theta), y = a(1 + \cos\theta).$

K16U 1223

- 9. Evaluate $\iint xy (x + y) dxdy$ over the area between $y = x^2$ and y = x.
- 10. Give any two elementary row operations for matrices.
- 11. Show that the diagonal elements of a skew symmetric matrix are all zero.
- 12. Do there exist Skew-symmetric orthogonal 3 x 3 matrices ? Justify.
- 13. If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, use Cayley Hamilton theorem to show that $A^3 = 4A^2 5A$. (7×2=14)

SECTION-C

Answer any 4 questions from among the questions 14 to 19. They carry 3 marks each.

14. If
$$I_n = \int_0^a (a^2 - x^2)^n dx$$
 and $I_0 = a$ prove that $I_n = \frac{2na^2}{2n+1} I_{n-1}$.

- 15. Find the surface of the solid generated by the revolution of the lemniscate. $r^2 = a^2 \cos 2\theta$ about the initial line.
- 16. Find by double integration, the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.
- 17. Solve by Gauss elimination method:

$$4y + 4z = 24$$

$$3x - 11y - 2z = -6$$

$$6x - 17y + z = 18$$
.

- 18. Find the inverse of $\begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$
- 19. Find eigenvectors of the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. (4x3=12)

K16U 1223

SECTION - D

-3-

Answer any 2 questions from among the questions 20 to 23. They carry 5 marks each.

20. Find the area between the ellipses $x^2 + 2y^2 = a^2$ and $2x^2 + y^2 = a^2$.

21. Show that
$$\int_{0}^{1} \left[\int_{0}^{1} \frac{x-y}{(x+y)^{2}} dy \right] dx \neq \int_{0}^{1} \left[\int_{0}^{1} \frac{x-y}{(x+y)^{2}} dx \right] dy$$

22. Solve by Cramer's rule :

$$3y + 4z = 14.8$$

$$4x + 2y - z = -6.3$$

$$x - y + 5z = 13.5$$
.

23. Find an eigen basis and diagonalize;