Answer any three from the following (Weightlage 3 each):



M 8735

Reg. No.: .....

II Semester B.Sc. Degree (C.C.S.S. - Supple./Improv.) Examination, May 2015 (2013 and Earlier Admn.) COMPLEMENTARY COURSE IN MATHEMATICS

2C02 MAT: Differential and Integral Calculus

Time: 3 Hours

Max. Weightage: 30

1. Fill in the blanks:

(Weightage:1)

a) 
$$\frac{d}{dx}\sqrt{(ax^2+2bx+c)} =$$
\_\_\_\_\_\_

b) 
$$\frac{d}{dx} (\cosh^{-1}x) = ______$$

- d) Radius of curvature in cartesian form is \_\_\_\_\_

Answer any six from the following (Weightage 1 each):

 $(6 \times 1 = 6)$ 

2. If 
$$z = log \sqrt{x^2 + y^2}$$
, prove that  $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ .

- 3. If  $y = \cos(m\sin^{-1}x)$  show that  $(1 x^2) y_{n+2} + (2n + 1) xy_{n+1} + (m^2 n^2)y_n = 0$ .
- 4. Evaluate  $\iint r^2 \sin\theta \, d\theta \, dr$  over the area of cardioids  $r = a \, (1 + \cos\theta)$  above the initial line.
- 5. Find the volume of the solid obtained by revolving the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  about the axis of x.
- 6. For the cycloid x = a (t + sint), y = a (1 cost), prove that  $\rho = 4acos \frac{t}{2}$ .

P.T.O.



- 7. Verify Rolle's theorem for the function  $f(x) = x^3 4x$ , in the interval [-2, 2].
- Evaluate ∫∫ rcos θ drd θ over the region bounded by the semicircle r = 2cos θ above the initial line.
- 9. Find the area bounded by the curves  $y^2 = 4 2x$  and y = 2 x.
- 10. Evaluate  $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dxdy$

Answer any seven from the following (Weightage 2 each):

 $(7 \times 2 = 14)$ 

- 11. By changing the order of integration, evaluate  $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dydx$
- 12. Expand logx in powers of x 1.
- 13. If  $x^y y^x = 1$ , find  $\frac{dy}{dx}$ .
- 14. Show that for any curve  $r = f(\theta)$  the curvature is given by  $\left[u + \frac{d^2u}{d\theta^2}\right] \sin^3 \varphi$ ; where  $u = \frac{1}{r}$ .
- 15. If  $u = log \left[ \frac{\left( x^4 + y^4 \right)}{\left( x + y \right)} \right]$ , show by Euler's theorem that  $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$ .
- 16. Obtain a reduction formula for  $\int \frac{x^n}{(\log x)^m} dx$ .
- 17. Find the area bounded by the curve  $xy^2 = 4a^2(2a x)$  and its asymptote.

- 18. Find the length of the curve  $y = log \left\{ e^{x} \frac{1}{e^{x} + 1} \right\}$  from x = 1 to x = 2.
- 19. Evaluate  $\iint_{00} \frac{dxdy}{\sqrt{1+x^2\sqrt{1-y^2}}}.$
- 20. Find the volume bounded by the co-ordinate planes and the plane  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ .

Answer any three from the following (Weightage 3 each):

 $(3 \times 3 = 9)$ 

- 21. Find the radius of curvature at any point (x, y) of the curve  $\frac{2}{x^3} + \frac{2}{y^3} = \frac{2}{a^3}$ .
- 22. Find the volume of the solid generated by the revolution of the tractrix  $x = acost + \frac{a}{2} logtan^2 \frac{t}{2}$ , y = asint about its asymptote.
- 23. Evaluate the surface area of the solid generated by revolving the cycloid  $x = a(\theta \sin \theta)$ ,  $y = a(1 \cos \theta)$  about the line y = 0.
- 24. A quadrant of the circle of radius a revolves about its chord. Show that the volume of the spindle generated is  $\frac{\pi}{6\sqrt{2}}(10-3\pi)a^3$ .
- 25. Show that the n<sup>th</sup> derivative of  $y = \frac{1}{1 + x + x^2 + x^3}$  is

 $\frac{1}{2}(-1)^{n}n! \sin^{n+1}\theta [\sin(n+1)\theta - \cos(n+1)\theta + (\sin\theta + \cos\theta)^{-n-1}].$