

M 6575

Reg. No.:

II Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.) Examination, May 2014 COMPLEMENTARY COURSE IN MATHEMATICS

2C02 MAT: Differential and Integral Calculus

Time: 3 Hours Max. Weightage: 30

1. Fill in the blanks:

a)
$$\frac{d}{dx} \left(x^{\frac{1}{n}} \right) =$$

b)
$$\frac{d}{dx} (\sinh^{-1}x) =$$

c)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right) = \underline{\hspace{1cm}}$$

d) Radius of curvature in parametric form is _____ (Wt.1)

Answer any six from the following (Weightage 1 each).

2. Find the radius of curvature at the point (1, 1) on the curve $x^3 + y^3 = 2xy$.

3. If
$$y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$$
, prove that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$.

- 4. Evaluate $\iint xy(x+y) dxdy$ over the area between $y=x^2$ and y=x.
- 5. Find the length of the arc of the parabola $x^2 = 4ay$ measured from the vertex to one extremity of the latus rectum.
- 6. If in the Cauchy's Mean Value Theorem, $f(x) = e^x$ and $F(x) = e^{-x}$, show that c is the arithmetic mean between a and b.

- 7. Evaluate $\lim_{x\to 0} \left(\frac{1-\cos x}{x \sin x} \right)$
- 8. Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2a\cos\theta} r^3 dr d\theta$.
- 9. Find the area enclosed by $y = 3x^2 x 3$ and $y = -2x^2 + 4x + 7$.
- 10. Evaluate $\iiint_{0.00}^{12.3} xyzdxdydz$.

 $(6 \times 1 = 6)$

Answer any seven from the following (Weightage 2 each).

- 11. By changing the order of integration, evaluate $\int_{0.0}^{\infty} \frac{e^{-y}}{y} dy dx$.
- 12. Expand the polynomial $x^4 5x^3 + 5x^2 + x + 2$ in powers of x 2.
- 13. Differentiate $y = x^{tanx} + (sinx)^{cosx}$.
- 14. Show that for the curve $\frac{r}{\rho} = \sin \phi \left(1 + \frac{d\phi}{d\theta} \right)$
- 15. If $z = (x + y) \phi\left(\frac{y}{x}\right)$, where ϕ is any arbitrary function prove that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$.
- 16. Obtain a reduction formula for \(\inf x^m \) sinnxdx.
- 17. Find the whole area of the curve $xy^2 = a^2 (a x)$ and the y-axis.
- 18. Prove that the area of the region bounded by the curve $a^4y^2 = x^5(2a x)$, is to that of the circle whose radius is a is 5 to 4.

0

- 19. Evaluate $\iint xy \, dxdy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$.
- 20. Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$. (7x2=14)

Answer any three from the following (Weightage 3 each).

- 21. Find the evaluate of the astroid $x = a\cos^3\theta$, $y = a\sin^3\theta$.
- 22. Find the volume of the solid obtained by revolving one arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about X-axis.
- 23. Find the area of the loop of the curve $x^4 + 3x^2y^2 + 2y^4 = a^2xy$.
- 24. Find the surface of the solid generated by the revolution of the lemniscates $r^2 = a^2\cos 2\theta$ about the initial line.

25. If
$$= x \log \frac{x-1}{x+1}$$
, prove that $\frac{d^n y}{dx^n} = (-1)^n (n-2)! \left[\frac{x-n}{(x+1)^n} - \frac{x+n}{(x+1)^n} \right]$. (3x3=9)