4 0105024

Reg. No.:....

Name:.....

K19U 3320

I Semester B.Sc. Degree CBCSS(OBE) - Regular Examination, November - 2019 (2019 Admissions) Core Course in Mathematics

1B01MAT : SET THEORY, DIFFERENTIAL CALCULUS AND

NUMERICAL METHODS

Time: 3 Hours

Max. Marks: 48

Part - A

Answer any 4 questions. Each Question carries 1 mark.

- 1. Find gof(2) if $f: R \to R$ and $g: R \to R$ are given by f(x)=3x-1; $g(x)=x^2-2$.
- 2. Find the limit $\lim_{x\to 0} \frac{\tan x}{x}$.
- 3. Find $\frac{\partial^2 z}{\partial x \partial y}$, if $z=\sin(2x-3y)$.
- 4. Find the degree of the homogenous equation $f(x,y) = \frac{\sqrt{x}}{x^2 + y^2}$.
- 5. Is the relation $R = \{(1,1), (1,2), (2,2), (1,3), (2,3), (3,3), (2,1)\}$ a partial order on {1,2,3}? Justify.

Part - B

Answer any 8 questions. Each question carries 2 marks.

- 6. Check if the function $f: R \to R$ given by $f(x) = \frac{3x+1}{2}$ is one-to-one and
- 7. Define equivalence relation and check if R={(1,1), (1,2), (2,2), (3,3), (1,3)} on the set $A = \{1,2,3\}$ is an equivalence relation or not.
- 8. Give an example of a function $f: R \to R$ which is one-to-one but not onto.
- 9. Write the inverse relation R^{-1} , if the relation R on the set $A = \{1,2,3,4,5\}$ is given by R={(m,n):m'divide'n}
- 10. Find the symmetric closure and reflexive closure of the relation on the set A = (1,2,3,4) given by $R = \{(1,1), (1,2), (1,3), (2,3)\}.$

P.T.O.

- **11.** Find the limit $\lim_{x\to 0} \frac{x}{|x|}$, if exists. Justify your answer.
- 12. Find the points of discontinuity of the function $f(x) = \frac{x + 2x^2}{x^2 4x + 3}$, if any.

(2)

- 13. If a>0, $a \le f(x) \le a + x$, $a x \le g(x) \le a$ and both the limits $\lim_{x \to 0} f(x), \lim_{x \to 0} g(x)$ exist, find $\lim_{x \to 0} \frac{f(x)}{g(x)}$.
- 14. If $z=u^2+v^2$ and $u=at^2$ v=2at, find $\frac{dz}{dt}$ using chain rule.
- 15. If $x^3+3x^2y+6xy^2+y^3=1$, find $\frac{dy}{dx}$.
- 16. Find a root of xex-2=0 using bisection method.

Part - C

Answer any 4 questions. Each question carries 4 marks.

- 17. Show that $f: R \to R$ defined by $f(x) = \frac{ax+b}{c}$, $a \neq 0$, $c \neq 0$ is one-to-one and onto. Find formula for f^{-1} .
- **18.** Give an example of a function $f: R \to R$ whose limit does not exists at any point of R (with justifications)
- 19. Evaluate the following limits:

i)
$$\lim_{x\to 3} \frac{x^3-27}{x^4-81}$$

ii)
$$\lim_{h\to 0} \frac{\sqrt{5h+4}-2}{h}$$

20. Examine the continuity of the function $f(x,y) = \begin{cases} \frac{3x-y}{2x+y} if(x,y) \neq (0,0) \\ 0, if(x,y) = (0,0) \end{cases}$ at the points (0,0) and (1,0).

(3)

K19U 3320

- 21. If $u=e^x \cos(y)$, $v=e^x \sin(y)$ and f(x, y) is any function of x and y, then show that
 - i) $\frac{\partial f}{\partial x} = u \frac{\partial f}{\partial u} + v \frac{\partial f}{\partial v}$
 - ii) $\frac{\partial f}{\partial y} = -v \frac{\partial f}{\partial u} + u \frac{\partial f}{\partial v}$
- 22. Show that if y=f(x+at)+g(x-at) with f and g twice differentiable, then $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}.$
- 23. Derive the Newton-Raphson formula for finding the root of an equation.

Part - D

Answer any 2 questions. Each question carries 6 marks.

- 24. Let $A = \{1, 2, 3, ..., 9, 10\}$. The relation '~' on A x A is defined by $(a, b) \sim (c, d)$ if ad = bc. Check whether this is an equivalence relation. If so, find the equivalence classes [(1,1)], [(1,3)] and [(3,1)].
- **25.** If $y = e^{a\sin^{-1}x}$, prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + a^2)y_n = 0$. Hence find the value of y_n when x=0.
- **26.** If $u = r^m$, where $r^2 = x^2 + y^2 + z^2$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = m(m+1)r^{m-2}$.
- 27. Find the point of intersection of the curve y=x³ and the line y=3x-1 using regula-falsi method, starting with suitable initial approximations (correct to two decimal places).