THALLS

K17U 2545

Reg. No. :

Name :

I Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.)
Examination, November 2017
(2014 Admn. Onwards)
COMPLEMENTARY COURSE IN MATHEMATICS

1C01 MAT-ST : Mathematics for Statistics - I

Time: 3 Hours

Max. Marks: 40

SECTION-A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Find $\frac{d}{dx}$ (e^{3x} cosh 4x).
- 2. State Taylor's theorem.
- 3. If $z = x^y$, find $\frac{\partial z}{\partial y}$.
- 4. Replace the polar equation, $r = -3 \sec \theta$ by an equivalent Cartesian equation.

 $(1 \times 4 = 4)$

SECTION-B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the derivative of $y = (\cos x)^{2x^2+3}$ with respect to x.
- 6. Find the second derivative of $f(x) = \frac{x-1}{x+2}$.
- 7. Find the nth derivative of cos x cos 2x.
- 8. Find $\frac{dy}{dx}$, when $x = a(\cos t + \log \tan \frac{t}{2})$, $y = a \sin t$.

- 9. Verify Rolles theorem for $f(x) = x + x^{-1}$ in the interval $\left[\frac{1}{2}, 2\right]$.
- 10. Find the intervals in which $f(x) = 3x^5 5x^3$ in increasing and decreasing.
- 11. Find $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$.
- 12. Find $\frac{\partial^2 u}{\partial y \partial x}$ and $\frac{\partial^2 u}{\partial x \partial y}$ for $u = x \sin y + y \sin x$.
- 13. Find the coordinates of the centre of curvature at (c, c) of the curve $xy = c^2$.

(2x7=14)

SECTION-C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Obtain the expansion of log cosh x in powers of x by Maclaurin's theorem.
- 15. Evaluate $\lim_{x \to 0} \frac{e^x 1 + \log(1 x)}{\sin^3 x}$.
- 16. Let $f:[a,b] \to \mathbb{R}$ be differentiable and $a \ge 0$. Using Cauchy mean value theorem, show that there exist $c_1, c_2 \in (a,b)$ such that $\frac{f'(c_1)}{a+b} = \frac{f'(c_2)}{2c_2}$.
- 17. If z is a function of x and y where $x = e^{u} + e^{-v}$, $y = e^{-u} e^{v}$, prove that

$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}.$$

- 18. Find the radius of curvature of the curve $2y^2 = x^3$ at the point (2, 2).
- 19. Convert the coordinates $(2\sqrt{3}, 6, -4)$ from Cartesian to spherical. (3×4=12)

SECTION-D

-3-

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

20. If
$$y = \frac{\sinh^{-1}x}{\sqrt{1+x^2}}$$
, show that $(1 + x^2) y_{n+2} + (2n + 3) xy_{n+1} + (n + 1)^2 y_n = 0$.

- 21. Verify that the function $f(x) = x^3 2x$ satisfies the hypotheses of the Mean Value Theorem on the interval [-2, 2]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
- 22. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, prove that

$$\frac{d^2y}{dx^2} = \frac{abc + 2fgh - af^2 - bg^2 - ch^2}{(hx + by + f)^3}.$$

- 23. a) Translate the equation $\rho \sin \phi = 2$ into Cartesian equation.
 - b) Describe the graph $\theta = \pi/4$ in cylindrical coordinates. (5x2=10)