

K17U 2544

Reg.	No.	:	

I Semester B.Sc. Degree (CBCSS-Reg./Supple./Improv.) Examination,
November 2017
(2014 Admn. Onwards)
COMPLEMENTARY COURSE IN MATHEMATICS
1C01 MAT-CH: Mathematics for Chemistry – I

Time: 3 Hours Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Find the derivative of sinh⁻¹(x⁵).
- 2. Find the value of $\frac{dy}{dx}$ if x = 3t, $y = t^2 4t + 1$.
- 3. Find $f_x(1, 3)$ for $f(x, y) = x^2 + y^2/4$.
- 4. In polar coordinates, what shape is described by r = k, where k is a constant? (1×4=4)

SECTION-B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. If $y = a \cosh \frac{x}{a}$, prove that $a^2 y_2^2 = 1 + y_1^2$.
- 6. Find the nth derivative of $e^{2x+4} + 6^{2x+4}$.
- 7. Expand cos x by Maclaurin's series.

8. If
$$x^y \cdot y^x = 1$$
, find $\frac{dy}{dx}$.

- Verify that f(x) = x³ x² 6x + 2 satisfies the hypotheses of Rolle's theorem for the interval [0, 3], then find all c that satisfy the conclusion.
- 10. Determine $\lim_{x\to 1} \frac{1+\log x x}{1-2x+x^2}$.
- 11. If $u = \log(e^x + e^y)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 1$.
- 12. If $u = \tan^{-1} \frac{y}{x}$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.
- 13. Find the radius of curvature of $y = 3x^2 + 4x$ at (1, 7).

 $(2 \times 7 = 14)$

 $(3 \times 4 = 12)$

SECTION-C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Expand $\log \sin x$ in powers of (x-2).
- 15. Determine $\lim_{x\to 0} (\cos x)^{1/x^2}$
- 16. Find the intervals in which the function f given by $f(x) = 4x^3 6x^2 72x + 30$ is (a) strictly increasing (b) strictly decreasing.
- 17. If $\sin v = \frac{x + 2y + 3z}{\sqrt{x^8 + y^8 + z^8}}$ show that $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} + z \frac{\partial v}{\partial z} + 3 \tan v = 0$,
- 18. For the cycloid $x = a(t + \sin t)$, $y = a(1 \cos t)$, prove that $\rho = 4a \cos \frac{t}{2}$.
- 19. Write the point $(x, y, z) = (\sqrt{6}, -\sqrt{6}, -2)$ in cylindrical and spherical co-ordinates.

-3-

K17U 2544

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. If $y = \cos(m \sin^{-1}x)$ show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$ and hence find $y_n(0)$.
- 21. Use Cauchy's mean value theorem to evaluate $\lim_{x\to 1} \left(\frac{\cos\frac{\pi x}{2}}{\log\frac{1}{x}}\right)$.
- 22. Show that the evolute of the ellipse $x = a \cos \theta$, $y = b \sin \theta$ is $(ax)^{2/3} + (by)^{2/3} = (a^2 b^2)^{2/3}$.
- 23. a) Translate the equation $r = \csc\theta$ into Cartesian and spherical equations.
 - b) Replace the polar equation $r^2 = 4r \sin \theta$ by an equivalent Cartesian equation. Describe the graph of the equation. (5x2=10)