

K16U 2500

Reg. No. :

Name :

I Semester B.Sc. Degree (C.C.S.S. – Reg./Supple./Improv.)

Examination, November 2016

COMPLEMENTARY COURSE IN MATHEMATICS

1C01 MAT-PH: Mathematics for Physics and Electronics – I

(2014 Admn. Onwards)

Time: 3 Hours

Total Marks: 40

SECTION-A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. What is the derivative of sinh⁻¹ x?
- 2. State Rolle's theorem.
- 3. Find $\lim_{x\to 0} \frac{a^x b^x}{x}$
- 4. State Euler's theorem on homogeneous functions.

 $(4 \times 1 = 4)$

SECTION - B

Answer any 7 questions from 5 to 13. They carry 2 marks each.

- 5. Find the derivative of $y = x^{\sin x}$.
- 6. Expand log(1 + x) by Maclaurin's theorem.
- 7. Find the nth derivative of $y = x^3 \cos x$.
- 8. If in the Cauchy's mean value theorem $f(x) = e^x$ and $F(x) = e^{-x}$, show that 'C' is the arithmetic mean between a and b.

K16U 2500

-2-

9. Find the radius of curvature at any point of the curve $s = c \tan \psi$.

10. If
$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
; $x^2 + y^2 + z^2 \neq 0$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.

- 11. Verify Euler's theorem for $z = ax^2 + 2hxy + by^2$.
- 12. Find all the polar coordinates of the point P(2, π /6).
- 13. Find the Cartesian coordinate of the points (3, 0) and (-3, π). (7x2=14)

SECTION - C

Answer any 4 questions from 14 to 19. They carry 3 marks each.

14. If
$$y = \cos(m \sin^{-1}x)$$
, show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$.

- 15. If $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$, f'(0) = a and f(0) = b, then find f''(x) where y is independent of x.
- 16. Prove that for any quadratic function px² + qx + r, the value of θ in Lagrange's theorem is always 1/2, whatever p, q, r, a, h may be.
- 17. Determine $\lim_{x\to 0} (\cot x)^{\frac{1}{\log x}}$.
- 18. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x y}\right)$, $x \neq y$, show that $x = \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.
- 19. Show that for the curve $s^2 = 8ay$, $\rho = 4a\sqrt{1-\frac{y}{2a}}$. (4×3=12)

-3-

K16U 2500

SECTION - D

Answer any 2 questions from 20 to 23. They carry 5 marks each.

20. If
$$y^{cotx} + (tan^{-1}x)^y = 1$$
, find $\frac{dy}{dx}$.

21. Discuss the applicability of Rolle's theorem to the function

$$f(x) = \begin{cases} x^2 + 1, & 0 \le x \le 1 \\ 3 - x, & 1 < x \le 2 \end{cases}$$

- 22. Obtain the evolute of the parabola $y^2 = 4ax$.
- 23. Find the spherical coordinate equation for the sphere $x^2 + y^2 + (z 1)^2 = 1$. (2x5=10)