M 7899

Reg. No.	:	
----------	---	--

Name :

I Semester B.Sc. Degree (CCSS – Regular) Examination, Nov. 2014 (2014 Admn.)

COMPLEMENTARY COURSE IN MATHEMATICS

1C01 MAT - PH : Mathematics for Physics and Electronics - I

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Find the nth derivative of e5x.
- 2. State Rolle's Theorem.
- 3. Is $\infty + \infty$ an indeterminate form?
- 4. Find the first order partial derivatives of eax sin by.

 $(4 \times 1 = 4)$

SECTION - B

Answer any 7 questions from 5 to 13. They carry two marks each.

- 5. If $x = e^{-t^2}$ and $y = tan^{-1} (2t + 1)$, find $\frac{dy}{dx}$.
- 6. Find the n^{th} derivative of $y = \cos^4 x$.
- 7. Obtain the expansion of log cos hx in powers of x by Maclaurin's theorem.
- 8. Discuss the continuity at the origin when $f(x) = x \log \sin x$.
- 9. Verify Euler's theorem for $z = ax^2 + 2hxy + by^2$.

- 10. Find the radius of curvature at any point of the curve $s=4a\sin\frac{1}{3}\psi$.
- 11. If u=3 $(/x + my + nz)^2 (x^2 + y^2 + z^2)$ and $/^2 + m^2 + n^2 = 1$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.
- 12. Graph the set of points whose polar coordinates satisfy the conditions $1 \le r \le 2$ and $0 \le \theta \le \frac{\pi}{2}$,
- 13. Find a polar equation for the circle $x^2 + (y 3)^2 = 9$.

 $(7 \times 2 = 14)$

SECTION-C

Answer any 4 questions from 14 to 19. They carry 3 marks each.

14. Change the independent variable to θ in the equation

$$\frac{d^2y}{dx^2} + \frac{2x}{1+x^2} \frac{dy}{dx} + \frac{y}{\left(1+x^2\right)^2} = 0 \text{ by means of the transformation } x = \tan \theta.$$

- 15. Find $y_n(0)$ when $y = \log (x + \sqrt{1 + x^2})$.
- 16. Use Cauchy's mean value theorem to evaluate $\lim_{x \to 1} \left[\frac{\cos \frac{\pi}{2} x}{\log \left(\frac{1}{x} \right)} \right]$.
- 17. Prove that for any quadratic function $px^2 + qx + r$, the value of θ in Lagrange's theorem is always $\frac{1}{2}$ whatever p, q, r, a, h may be.

- 18. Find $f_{xy}(0, 0)$ for the function f given by $f(x, y) = \begin{cases} \frac{xy(x^2 y^2)}{x^2 + y^2}; & (x, y) \neq (0, 0) \\ 0; & (x, y) = (0, 0) \end{cases}$.
- 19. Prove that if $y^3 3ax^2 + x^3 = 0$, then $\frac{d^2y}{dx^2} + \frac{2a^2x^2}{y^5} = 0$. (4x3=12)

SECTION - D

Answer any 2 questions from 20 to 23. They carry 5 marks each.

- 20. Use Taylor's theorem to prove that $tan^{-1}(x + h) = tan^{-1}x + (h \sin z)\frac{\sin z}{1}$ - $(h \sin z)^2 \frac{\sin 2z}{2} + \dots$ where $z = \cot^{-1}x$.
- 21. Find the value of a and b in order that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}$ may be equal to 1.
- 22. Show that the curvature of the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the folium $x^3 + y^3 = 3axy$ is $\frac{-8\sqrt{2}}{3a}$.
- 23. Translate the equation $\rho = 6 \cos \phi$ into Cartesian and cylindrical equations. (2x5=10)