Name :

K15U 0473

I Semester B.Sc. Degree (CCSS – Supple./Improv.)

Examination, November 2015

(2013 and Earlier Admn.)

COMPLEMENTARY COURSE IN MATHEMATICS

1C01 MAT: Algebra and Geometry

Time: 3 Hours	Max. Weightage: 30

Fil	I in the blanks.
a)	Number of identity elements in a group is
b)	Dimension of R ³ is
c)	The condition for unique solution for the system of homogeneous system of equations AX = 0 is
d)	If A is a square matrix of order n, then the roots of the equation $ A - \lambda = 0$
	are known as (Weightage 1

Answer any six from the following. (Weightage 1 each)

2. Define a field.

1.

- 3. Give an example for a vector space.
- 4. Define linear transformation between two vector spaces.
- 5. Examine whether the transformation $T: \mathbb{R}^3 \to \mathbb{R}$ defined by T(x, y, z) = xy + x + z is linear or not. Justify your answer.
- 6. State Cayley Hamilton theorem.
- 7. If $\lambda = 1$ is an eigen value of $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$, find the other two eigen values of A without using its characteristic equation.

- 8. Prove that eigen values of a skew-Hermitian matrix are purely imaginary or zero.
- 9. Sketch the graph $-3 \le r \le 2$; $\theta = \frac{\pi}{4}$.
- Obtain the relation between spherical coordinates and Cartesian co-ordinates in space. (Weightage 6×1=6)

Answer any seven from the following. (Weightage 2 each)

- Let S be the set of all real numbers except 1. Define * on S by a * b = a + b + ab.
 Show that (S, *) is a group.
- Define linearly dependence and independence of vectors. Examine whether the Vectors (2, 2, 1), (1, -1, 1), (1, 0, 1) are linearly independent.
- 13. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x, y, z) = (0, x + y, x + y + z). Find the matrix representation of T with respect to the ordered basis $X = \{(1, 0, 1), (1, 1, 0), (0, 1, 1)\}$ in \mathbb{R}^3 and $Y = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ in \mathbb{R}^3 .
- 14. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(x, y, z) = (y + z, y z). Find the matrix of the linear transformation T with respect to the ordered basis $X = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ in \mathbb{R}^3 and $Y = \{(1, 0), (0, 1)\}$ in \mathbb{R}^2 .
- 15. Reduce the matrix $A = \begin{bmatrix} 4 & 3 & 0 & -2 \\ 3 & 4 & -1 & -3 \\ 7 & 7 & -1 & -5 \end{bmatrix}$ into its normal form and hence find its rank.
- 16. Show that equations x + 2y z = 3, 3x y + 2z = 1, 2x 2y + 3z = 2, x y + z = -1 are consistent and solve them.
- 17. For what values of λ and μ do the system of equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have (a) no solution (b) unique solution (c) more than one solution?
- 18. Find all the non-trivial solutions of 2x y + 3z = 0, 3x + 2y + z = 0, x 4y + 5z = 0.
- 19. Find the equivalent Cartesian equation of the polar equation $r = \frac{4}{2\cos\theta \sin\theta}$
- 20. Find a spherical coordinate equation for the cone $z = \sqrt{x^2 + y^2}$.

 (Weightage 7×2=14)

Answer any three from the following. (Weightage 3 each)

21. Determine whether the following set of vectors {u, v, w} form a basis in R3, where

-3-

- i) u = (2, 2, 0), v = (3, 0, 2), w = (2, -2, 2)
- ii) u = (0, 1, -1), v = (-1, 0, -1), w = (3, 1, 3).
- 22. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$.
- 23. Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$ and hence find A^4 .
- 24. Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find the matrix represented by $A^8 5A^7 + 7A^6 3A^5 + A^4 5A^3 + 8A^2 2A + I$.
- 25. Describe the rectangular, cylindrical and spherical coordinate representation of points in space. Represent the rectangular equation $x^2 + y^2 + \left(z \frac{1}{2}\right)^2 = \frac{1}{4}$ into other two coordinate systems. (Weightage 3×3=9)