COLLEG	Paris
ALL LEROR	A VA
THAL	
	THAL

M 7773

Reg. No.:.... Name :

	I Semester B.Sc. Degree (CCSS – Supple./Improve.) Examination, November 2014
	COMPLEMENTARY COURSE IN MATHEMATICS
	1C 01 MAT : Algebra and Geometry
	(2013 and Earlier Admn.)
Time: 3 H	ours Max. Weightage: 30
1. Fill in	the blanks :
a)	is an example of a nonabelian group.
b)	is an example of a two dimensional vector space.
c)	is an example of a field.
d)	is a subspace of IR ³ . (Weightage – 1)
Answer	any six from the following (Weightage 1 each):
2. Find t	he span of $\{(1, 1), (2, 2)\}$ in \mathbb{R}^2 .
	or disprove that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (2x_1, 3x_2)$ is a linear ormation.
4. Check	whether the set of all $f \in \mathcal{C}[0, 1]$ such that $f(3/4) = 1$ is a subspace of
€ [0, 1	
	that in a vector space V any set of vectors containing the zero vector is y dependent.
6. Let T :	$U \rightarrow V$ be a linear map. Then prove that $T(-u) = -T(u)$.
7. Can w	e produce any number of basis in a vector space. Why?
8. Define	e eigen value of a matrix.

- 9. Can polar coordinates have negative values? Explain.
- 10. Write equations relating rectangular (x, y, z) and cylindrical (r, θ, z) co-ordinates.
- 11. Find an equation for the cylinder $x^2 + (y 3)^2 = 9$ in cylindrical co-ordinates. (Weightage 6×1=6)

Answer any seven from the following (weightage 2 each):

- Let S be a nonempty subset of a vector space V. Then prove that [S], the span of S, is a subspace of V.
- Let U₁ and U₂ be two subspaces of a vector spee V. Then prove that U₁ ∩ U₂ is also a subspace of V.
- Prove that in an n-dimensional vector space V, any set of n linearly independent vector is a basis.
- Prove that a linear transformation on a 1-dimensional vector space is nothing but multiplication by a fixed scalar.
- 16. Determine whether there exists a linear map $T: V_2 \rightarrow V_2$ such that T(2, 1) = (2, 1) and T(1, 2) = (4, 2). If it exists write the general formula otherwise give reasons.
- 17. Find the rank of the matrix:

$$\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$$

18. Using Cayley Hamilton theorem, show that $A^3 - 6A^2 + 11A - 6I = 0$ where

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{bmatrix}$$

19. Investigate the values of λ and μ so that the equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8, $2x + 3y + \lambda z = \mu$ have no solution.

20. Solve the system of equations:

$$2x - y + z = 7$$
, $3x + y - 5z = 13$, $x + y + z = 5$.

21. Show that if $\lambda \neq -5$, the system of equations :

$$3x - y + 4z = 3$$
, $x + 2y - 3z = -2$, $6x + 5y + \lambda z = -3$ have a unique solution.

22. Show that the transpose AT has the same eigen values of A. (7x2=14)

Answer any three from the following (Weightage 3 each):

23. Find the eigen values and the corresponding eigen vectors of the matrix:

- 24. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ and find its inverse.
- 25. 1) Convert the polar equation $r = 8 \sin \theta$ into Cartesian equation.
 - 2) Convert the Cartesian equation $y^2 = 4x$ into polar equation.
- 26. Translate $x^2 + y^2 + (z \frac{1}{2})^2 = \frac{1}{4}$ into cylindrical and spherical system.

(Weightage: 3x3=9)