Let X and Y be melde equees. Prove that I : X -> Y is a continuous function if inverse image of every open set in Y is agon in X.

Fit and A. Bland A. denote subsets of a space X. Prove that

e event text X to economica to consumate at the train travers

St. Prove or diagnova. All metric snace are T_d.

so the xint annual countries set any point.

33. Prove that a impological aprice is 1, it every singleton set is closed in 10.

en Let X, n. (Y. C) be two topological apaces and f. X -- Y a function. Then show

The Continuous G.e. t = Continuous L.

in There exist a sub-base Siter Cauch that I (V) = a tor an V = S

W. For any ninsed subset A of Y. P. (A) is closed in X.
V. For all A = X, 1(A) = 1(A).

5. Defind Lebesgue number. Prove that in a compact metric space every open cover twee a Excessor number. Using this most show that every continuous

K21U 0219

Reg.	No.	:	

Name :

VI Semester B.Sc. Hon's (Mathematics) Degree (Supple.)

Examination, April 2021

(2014 – 2015 Admissions)

BHM 603 : TOPOLOGY

Time: 3 Hours Max. Marks: 80

Answer all the 10 questions.

(10×1=10)

- Let X be an infinite set and d be the discrete metric on X. Is the metric space (X, d) is compact? Justify.
- 2. If in a metric space we have B(x, r) = B(x, s) does it mean that r = s?
- 3. What is the closure of $\mathbb Z$ in $\mathbb R$ with respect to discrete topology on $\mathbb R$?
- 4. Define metrizable topology.
- 5. Define semi open interval topology on \mathbb{R} .
- 6. Does there exist a countable dense subset of $\mathbb R$ with cofinite topology ?
- 7. Define normal space. The season mobile the property factor work as
- 8. Give an example of path connected topological space.
- "Continuous image of a Hausdorff space need not be Hausdorff" Give an example.
- 10. Let $X = \{a, b\}$ and $\tau = \{\phi, X, \{a\}\}$. Check whether (X, τ) is a T_2 -space.

Answer any 10 short answer questions out of 14.

 $(10 \times 3 = 30)$

- 11. Show that discrete metric space (X, d) is Hausdorff.
- 12. Let A and B are two subsets of a topological space (X, d).
 - i) Is $int(A) \cup int(B) = int(A \cup B)$?
- ii) Is int(A) ∩ int(B) = int(A ∩ B) ?Justify your answer.

P.T.O.

- 11. What is meant by diffusion current?
- 12. What is an inversion center?
- 13. What is micro emulsion method?
- 14. What do you mean by meta stable ion?
- 15. Write two advantages of Raman spectra over IR spectra.
- 16. Identify the mirror planes present in BF_a.
- 17. Give the point group of NH₃ and N₂O₄.
- 18. Explain the effect of hybridization on the frequency of vibra.

 $(2 \times 7 = 14)$

SECTION - C

(Answer any 4 questions. Each question carries 3 marks.)

- 19. Using Woodward Feiser rule calculate λ_{max} for :
 - a) 3,4-dimethylpent-3-ene-2-one.
 - b) p-chloroacetophenone.
- 20. Discuss two chemical methods for nano particle synthesis.
- 21. What are the advantages of amperometric titration?
- 22. What are the factors affecting chemical shift?
- 23. Give three applications of carbon nanotubes.
- 24. Explain the terms proper and improper rotation with suitable example.
- 25. Explain the Mc Lafferty rearrangement.
- 26. Discuss the significance of group frequency concept in IR spectroscopy.

 $(3 \times 4 = 12)$

SECTION - D

(Answer any 2 questions. Each question carries 5 marks.)

- 27. a) Explain the selection rules for Raman spectroscopy.
 - b) Discuss the quantum theory of Raman scattering.
- 28. Explain the different kinds of symmetry elements and symmetry operations.
- 29. Describe the theory and instrumentation of spectrophotometry.
- 30. Explain the construction and working of dropping mercury electrode. What are the advantages of it?
- 31. Discuss any two methods for the characterisation of nanoparticles.
- 32. a) Explain the term force constant on the basis of simple harmonic oscillator model of a diatomic molecule.
 - b) The force constant of HI IS 283.4 N m⁻¹ .Calculate the fundamental frequency in cm¹. [H=1.008; I=126.9]. (5×2=10)