X no platem a cala al X av x a way that lo+ 1 prove that xy ≤ -+ 26. Prove that a non empty open set in gills the union of a countable family of

Answer any 6 shot easily ouestions out al-9

K18U 0323

ty Prove that d(x, y)

Reg. No.: .....

VI Semester B.Sc. Hon's (Mathematics) Degree (Regular/Supple./Improv.)

Examination, May 2018 BHM 603: TOPOLOGY

(2013-15 Admissions)

Time: 3 Hours

Max. Marks: 80 (c) = p (a, a) = q eradw (d - a) + (d - a) = (p (d) b) (b (a) a) (d - a)

Answer all the 10 questions: (10×1=10)

- 1. Define the discrete metric on a non-empty set X.
- 2. Define the Hausdorff property of a metric space (X, d).
- 3. When we say that a topological space is metrizable?
- 4. Define the co-finite topology.
- 5. If X = {a, b, c, d, e} with topology  $\tau = \{x, \varnothing \ , \ \{a, \ b, \ c\}, \ \{c, \ d, \ e\}, \ \{c\}\},$  check whether  $A = \{a, \ d, \ e\}$  is connected or 18. Prove that every quotient space of a discrete repolarical space is discrete ton
- 6. Define the closure of a subset of a topological space.
- 7. 'Second countability is not preserved under continuous functions' Give an example.
- 8. 'Length is not a topological property' Give an example.'
- 9. If  $X = \{a, b\}$  with topology  $\tau = \{X, \emptyset, \{a\}\}$ , check whether  $(X, \tau)$  is a  $T_1$  space.
- 10. If  $X = \{a, b, c, d, e\}$  and  $\mathcal{A} = \{\{a, b, c,\}, \{c, d\}, \{d, e\}\}$ . Find the topology generated by A.

Prove that every compact Hausdorff space is a T. space.



Answer any 10 short answer questions out of 14:

 $(10 \times 3 = 30)$ 

- 11. Prove that d(x, y) = |x y| is a metric on  $\mathbb{R}$ , where  $\mathbb{R}$  is the set of all real numbers.
- 12. Draw the figures of open unit ball B(0, 1) in the following three metric spaces.
  - i)  $(\mathbb{R}^2, d)$ , where d is the usual metric on  $\mathbb{R}^2$
  - ii)  $(\mathbb{R}^2, d_1)$ , if  $d_1(p, q) = \max\{|a_1 b_1|, |a_2 b_2|\}$ , where  $p = (a_1, a_2)$  and  $q = (b_1, b_2)$  are arbitrary points in  $\mathbb{R}^2$ .
  - iii)  $(\mathbb{R}^2, d_2)$ , if  $d_2(p, q) = |a_1 b_1| + |a_2 b_2|$ , where  $p = (a_1, a_2)$ ,  $q = (b_1, b_2)$ .
- 13. Prove that any Cauchy sequence in a metric space is bounded.
- 14. Given any family  $\unlhd$  of subsets of X, prove that there is a unique topology  $\tau$  on X-having  $\unlhd$  as a subbase.
- 15. Prove that a subset A of a topological space X is dense in X if and only if for every non empty open subset B of X,  $A \cap B \neq \emptyset$ .
- 16. If A is a subset of a topological space  $(X, \tau)$  prove that A is closed iff  $= \overline{A} = A$ .
- 17. If  $(X, \tau)$  and (Y, u) are topological spaces and  $f: X \rightarrow Y$  is a function, prove that f is continuous at  $x_0 \in X$  iff for all  $v \in u$ ,  $f^{-1}(V) \in \tau$ .
- 18. Prove that every quotient space of a discrete topological space is discrete.
- 19. Prove that every continuous image of a compact space is compact.
- If f: X→Y is a continuous surjection, where X and Y are topological spaces and X is connected, prove that Y is also connected.
- 21. Define a To-space. Give an example.
- 22. Prove that regularity is a hereditary property.
- 23. If X is a Hausdorff space,  $x \in X$  and F is a compact subset of X not containing x, show that there exist disjoint open sets U and V such that  $x \in U$  and  $F \subset V$ .
- 24. Prove that every compact Hausdorff space is a T<sub>3</sub>-space.

-3-

 $(6 \times 5 = 30)$ 

K18U 0323

Answer any 6 short essay questions out of 9 :

25. If d is a metric on a non-empty set X, show that  $\delta(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ , where x, y \in X, is also a metric on X.

26. Let x, y be non-negative real numbers and p > 1 and q > 1 be defined in such a way that  $\frac{1}{p} + \frac{1}{q} = 1$ , prove that  $xy \le \frac{x^p}{p} + \frac{y^q}{q}$ .

27. Prove that  $\ell_p = \left\{ \left(a_n\right)_{n=1}^{\infty} : a_n \in \mathbb{R} \text{ or } \mathbb{C} \text{ and } \sum_{n=1}^{\infty} \left|a_n\right|^p < \infty \right\}$  is a vector space over  $\mathbb{R}$  (or  $\mathbb{C}$  as the caseman be).

- 28. Prove that a non empty open set in  $\mathbb{R}$  is the union of a countable family of pairwise disjoint open intervals.
- 29. Prove that the limit of a sequence in a metric space is unique.
- 30. If X is a set and  $\{\tau_i: i\in I\}$  is an indexed family of topologies on X, show that  $\tau = \bigcap_{i=1}^{r} \tau_i$  is a topology on X.
- 31. For a subset A of a topological space X, prove that  $\overline{A} = A \cup A'$ .
- 32. Prove that every quotient space of a locally connected space is locally connected.
- 33. Prove that all metric spaces are T4.

Answer any one essay question out of 2:

 $(1 \times 10 = 10)$ 

- 34. If V is a an inner product space, prove that  $|\langle x, y \rangle| \le ||x|| ||y||$  for all  $x, y \in V$ . Prove also that equality holds iff one of them is a scalar multiple of other.
- 35. Prove that every regular, Lindeloff space is normal.