KERDING TO STATE OF THE PROPERTY OF THE PROPER

Prove that a spane (X, S) is a T, space if and only if every (x), x d X, is closed.

11. Prove that in a Hausdorff space, the limits of enquences are unique

12. Define a completely regular space2s of prove that every completely regular

SECTION-D

Answer any two questions from the four questions. Each question (2x6= cames 6 marks.

 a) Let X be a sat and D a family of subsets of X. Prove that there is a unique topology 3 on X, such that it is the smallest topology on X containing D.

by Deline a sub base for a topology 5 on a set X. Give a countable sub base for the usual topology on R.

2 a) Let (X, 5) be a topological space and A c X. Prove that A is a compact subset of X if and only if (A, 3/A) is a compact topological space.

b) Is if true that closure of a compact subset is always compact? Justify your

3. a) Prove that the closure of a connected set is always connected. Is the interior of a connected set is always connected 2. Justify your answer.

b) is there any continuous bijection from (a, b) to (n, b) in the usual topology ?

a) If (X, 3) is a Hausdorff space and IX = ((x, x) : x = X) :: X = X, prove that
 K is a closed subset relative to the product topology on X x X

b) Let (X, 3) be a regular space. Prove that for any x c, X and any open set G.
 containing x, them is an open set H such that x = H = H = G.

K20U 0214

Reg. No.:

Name: : specially an epage liable of the energy and specially and epage liable of the energy and the ener

VI Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)

Examination, April 2020

BHM 602 : TOPOLOGY

(2016 Admissions Onwards)

Time: 3 Hours

Max. Marks: 60

nomego don 3 anotes m e SECTION - A remission triple your rewerth

Answer any four questions out of the five questions. Each question carries 1 mark. (4×1=4

- If X = {a, b, c, d} and ℑ = {φ, {a}, {a, b}, {a, b, d}, {a, b, c, d} }, test whether ℑ is a topology on X.
- If X = {a, b} and ℑ = {φ, {a}, {a, b} }, is (X, ℑ) metrizable. Justify your answer.
- Is it true that every topological space has at least one basis. Justify your answer.
- 4. Is it true that [0, 1] homeomorphic to (0, 1)? Justify your answer.
- 5. Establish with the help of an example that not every T₀ space is T₁.

SECTION - B

Answer any six questions out of the nine questions. Each question carries 2 marks. (6×2=12)

- 1. Prove that in the discrete topological space (X, 3), a sequence is convergent if and only if it is eventually constant.
- 2. Prove that the semi open interval topology on the set of real numbers R is stronger than the usual topology on R.
- Prove that the co finite topology on any infinite set X has countable dense subsets.
- If ℑ₁ and ℑ₂ are two topologies on a set X, is ℑ₁ ∪ ℑ₂ a topology on X? Justify your answer.
- If (X, ℑ) is a topological space and Y ∈ ℑ, prove that a subset G of Y is open in the subspace topology (Y, ℑ/Y) if and only if G is open in (X, ℑ).

P.T.O.

- 6. Prove that second countability is a hereditary property.
- Is there any topological space in which compact subsets are not closed? Justify.
- 8. Is it true that the set of rational numbers Q is connected in the subspace topology on Q induced by the usual topology on the set of real numbers R? Justify your answer.
 - Is the cofinite topology on an infinite set X is Hausdorff? Justify. What happens if X is finite? Justify.

SECTION - C

Answer any eight questions out of the twelve questions. Each question carries 4 marks. (8x4=32)

- Prove that the set of rational numbers is dense in the set of real numbers in the usual topology.
- 2. Let X be a non empty set and A and B are two non empty distinct and proper subsets of X. Prove that $\Im = \{\phi, A, B, X\}$ is a topology on X if and only if exactly one of the following holds.
 - 1) A is a proper subset of B
 - 2) B is a proper subset of A
 - 3) A = X B.
- Let (X, S₁) and (Y, S₂) be two topological spaces and every function from X → Y is continuous from (X, S₁) to (X, S₂). Prove that either S₁ is discrete or S₂ is indiscrete.
- 4. Let (X, \Im) be a topological space. Prove that a subset A of X is a dense subset of X if and only if for every non empty open subset B of X, $A \cap B \neq \emptyset$.
- Define a quotient map and prove that every closed surjective map is a quotient map.
- 6. Prove that the continuous image of a compact set is compact.
 - Prove that a space is connected if and only if it cannot be written as the disjoint union of two non empty open subsets.
 - 8. Let (X, ℑ) be a topological space and C is a subset X with (C, ℑ/C) is connected. If C ⊂ A ∪ B, where A and B are mutually separated subsets of X, Prove that either C ⊂ A or C ⊂ B.
 - 9. Prove that every second countable space is first countable. Is the converse true? Justify.

-3-

K20U 0214

- Prove that a space (X, ℑ) is a T₁ space if and only if every {x}, x ∈ X, is closed.
- 11. Prove that in a Hausdorff space, the limits of sequences are unique.
- Define a completely regular space and prove that every completely regular space is regular.

SECTION - D

Answer any two questions from the four questions. Each question carries 6 marks.

(2×6=12)

- a) Let X be a set and D a family of subsets of X. Prove that there is a unique topology 3 on X, such that it is the smallest topology on X containing D.
 - b) Define a sub base for a topology 3 on a set X. Give a countable sub base for the usual topology on R.
- a) Let (X, ℑ) be a topological space and A ⊂ X. Prove that A is a compact subset of X if and only if (A, ℑ/A) is a compact topological space.
 - b) Is it true that closure of a compact subset is always compact? Justify your answer.
- a) Prove that the closure of a connected set is always connected. Is the interior of a connected set is always connected? Justify your answer.
 - b) Is there any continuous bijection from [a, b] to (a, b) in the usual topology? Justify your answer.
- 4. a) If (X, \Im) is a Hausdorff space and $K = \{(x, x) : x \in X\} \subset X \times X$, prove that K is a closed subset relative to the product topology on $X \times X$.
 - b) Let (X, 3) be a regular space. Prove that for any $x \in X$ and any open set G containing x, there is an open set H such that $x \in H \subset \overline{H} \subset G$.