Reg. No.:....

Name :

THALLS 3

K19U 0777

VI Semester B.Sc. Hon's (Mathematics) Degree (Supplementary)
Examination, April 2019
(2013-'15 Admissions)

BHM 603: TOPOLOGY

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions:

 $(10 \times 1 = 10)$

- 1. Describe the discrete metric and taxicab metric on Rn
- 2. State Minkowski inequality.
- 3. Define continuity of a sequence.
- Find the closure of a set Q ⊂ R under usual-topology.
- 5. State whether true or false and justify your answer. R under usual topology is hausdorff.
- 6. Define base for a topology.
- 7. Find the boundary of $A = \{a\}$, where $X = \{a, b\}$ with discrete topology.
- 8. State Lebesgue covering lemma.
- 9. Define local base at a point.
- 10. What is T₁ axiom?

Answer any 10 short answer questions out of 14.

 $(10 \times 3 = 30)$

- 11. Show that limit of a sequence in a metric space is unique.
- 12. State Holder's inequality.
- 13. Prove that R is complete under usual metric.

K19U 0777 -2-

- 14. State Weierstrass approximation theorem.
- 15. Consider real line under cofinite topology. Find the closure of ZZ.
- 16. Prove that int $A \cup int B \subseteq int (A \cup B)$.
- Let A be a subset of a topological space (X, τ). Prove that A is closed if and only if Ā = A.
- 18. Let τ_1 , τ_2 be two topologies for a set having bases \mathbb{B}_1 and \mathbb{B}_2 respectively. Then prove that τ_1 is weaker than τ_2 if and only if every member of \mathbb{B}_1 can be expressed as a union of some members of \mathbb{B}_2 .
- 19. Prove that every open surjective map is a quotient map.
- 20. Prove that if f is continuous at x₀ then the inverse image of every neighbourhood of f(x₀) in Y is a neighbourhood of x₀ in X.
- 21. Show that every second countable space is first countable.
- 22. Prove the closed subspace of a compact space is compact.
- 23. Prove or disprove: Every completely regular space is regular.
- 24. Show that a compact subset in a Hausdorff space is closed.

Answer any 6 short answer questions out of 9.

 $(6 \times 5 = 30)$

- 25. Let X and Y be metric space. Let X × Y enclosed with the product metric. Show that sequence $(x_n, y_n) \in X \times Y$ converges to $(x, y) \in X \times Y$ if and only if $x_n \to x$ in X and $y_n \to y$ in Y.
- 26. State and prove Bolzano-Weierstrass theorem.
- 27. Let A be a subset of a space X. Prove that A is dense in X if and only if int (X − A) = Ø.
- 28. Show that metrizability is a hereditary property.
- Prove that a set is closed if and only if it contains its boundary and it is open if and only if it is disjoint from its boundary.
- 30. For any three spaces, X, Y, Z, prove that $X \times (Y \times Z)$ id homeomorphic to $(X \times Y) \times Z$.

-3- K19U 0777

31. Prove that every continuous real valued function on a compact space is bounded and attains its extrema.

- 32. Prove that all metric space are T4.
- 33. Prove that a Hausdorff space limits of sequence are unique.

Answer any one essay question out of 2.

 $(1 \times 10 = 10)$

- 34. Prove that every closed bounded interval is compact.
- 35. Let $\{(X_i, \tau_i) ; i = 1, 2,, n\}$ be a collection of topological spaces and (X, τ) be their product. Prove
 - a) Each projection π_i is continuous.
 - b) If Z is any space then the function $f: Z \to X$ is continuous if and only if $Z \mapsto X_i$ is continuous for all i = 1, 2,, n.