

K19U 0762

VI Semester B.Sc. Hon's (Mathematics) Degree (Reg.
VI Semester B.Sc. Hom's (Mathematics) Degree (Neg.
Examination, April 2019
(2016 Admission)
BHM 602 : TOPOLOGY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions out of the five questions. Each question carries 1 mark.

(4×1=4)

- If X = {a, b, c, d, e} and ℑ = {φ, {a}, {a, b}, {a, b, d}, {a, b, c, d}, X}, test whether ℑ is a topology on X.
- 2. If $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$, is (X, \mathfrak{I}) metrizable. Justify your answer.
- 3. If (X, \Im) is a discrete topological space, establish that $\{\{x\} : x \in X\}$ is a basis.
- If R is the set of real numbers and (R, ℑ₁) and (R, ℑ₂) are the usual and discrete topologies respectively on R, is there any continuous function from (R, ℑ₁) to (R, ℑ₂). Justify your answer.
- 5. If $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$, is (X, \mathfrak{I}) a T_2 space. Justify your answer.

SECTION - B

Answer any six questions out of the nine questions. Each question carries 2 marks.

(6×2=12)

- 1. Define a dense subset in a topological space and give an example.
- Let (X, ℑ) be a topological space and Y be a non empty subset of X. If D is a
 dense subset of (X, ℑ), is it always true that D ∩ Y is dense in (Y, ℑ/Y)? Justify.

P.T.O.

K19U 0762

3. Define a compact topological space and given an example for the same.

- 4. Is it true that every compact subset of a topological space is closed? Justify.
- Let (X, ℑ₁) and (X, ℑ₂) be two topologies on X. If ℑ₂ is weaker than ℑ₁, prove that the identity function I: X → X is continuous from (X, ℑ₁) to (X, ℑ₂).
- 6. Prove that second countability is a hereditary property.
- 7. Give an example of a T₁ space which is not T₂.
- 8. Define a completely regular topological space.
- 9. Are there any non empty disjoint open subsets C and D in R with usual topology such that $C \cup D = R$? Justify.

SECTION - C

Answer any eight questions out of the twelve questions. Each question carries 4 marks. (8×4=32)

- 1. If (X, \mathfrak{I}_1) and (X, \mathfrak{I}_2) are topological spaces on a set X with bases β_1 and β_2 respectively, prove that \mathfrak{I}_1 is weaker than \mathfrak{I}_2 if and only if every member of β_1 is a union of members of β_2 .
- 2. Let (X, 3) be a topological space and A, B are subsets of X. Prove the following:
 - i) A is the smallest closed set containing A
 - ii) A is closed in X if and only if $\overline{A} = A$
 - iii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. Let (X, \mathfrak{I}_1) and (Y, \mathfrak{I}_2) be two topological spaces and every function from $X \to Y$ is continuous from (X, \mathfrak{I}_1) to (X, \mathfrak{I}_2) . Prove that either \mathfrak{I}_1 is discrete or \mathfrak{I}_2 is indiscrete.
- 4. Let (X, d) be metric space and $A \subset X$. Prove that $x \in \overline{A}$ if and only if there is a sequence $\{x_n\}$ in A such that $\{x_n\}$ converges to x.
- Define a quotient map and prove that every open surjective map is a quotient map.
- 6. Let $(X, \, \mathfrak{I}_1)$ be a topological space and let \mathfrak{I}_2 be the discrete topology on $Y = \{a, b\}$. Prove that $(X, \, \mathfrak{I}_1)$ is disconnected if and only if there is a non constant continuous function from $(X, \, \mathfrak{I}_1)$ to $(Y, \, \mathfrak{I}_2)$.

-3- K19U 0762

Prove that a space is connected if and only if it cannot be written as the disjoint union of two non empty closed subsets.

- Define a path connected space and prove that a path connected space is connected.
- Prove that every infinite subset A of a compact space X has at least one accumulation point in X.
- Prove that in a Hausdorff space (X, 3), a point x in X and a compact set F not containing x can be separated by disjoint open sets and establish that F is closed.
- 11. a) If S¹ is the unit circle, is there any continuous bijection from S¹ to R? Justify your answer.
 - b) What is the smallest topology \Im on a set X such that (X, \Im) is a T_1 space?
- 12. Define a regular space. Prove that in a regular space (X, ℑ), for any x ∈ X and any open set G containing x, there is an open set H such that x ∈ H ⊂ H ⊂ G.

SECTION - D

Answer any two questions from the four questions. Each question carries 6 marks.

(2×6=12)

- 1. a) Let (X, \Im) be a topological space and A be a subset of X. Show that $\overline{A} = \{y \in X : \text{every neighborhood of y meets A non vacuously}\}$
 - b) If (X, 3) is a discrete topological space, is there any proper dense sub set of X? Justify your answer.
- a) Let C be a collection of connected subsets of a space X such that no two
 members of C are mutually separated. Prove that ∪{c : c ∈ C} is connected.
 - b) If X₁ and X₂ are two connected topological spaces. Prove that X₁ × X₂ is connected in the product topology.
- a) Prove that every continuous function from a compact space into a T₂ space is closed.
 - b) Prove that continuous bijection from a compact space into a Hausdorff space is a homeomorphism.
- 4. Let (X, \Im) be an indiscrete space. Then prove the following:
 - i) (X, 3) is a normal space
 - ii) Every continuous function from X to [0, 1] is a constant
 - iii) Do (i) and (ii) together contradict the Urysohn's lemma? Justify your answer.