-6-

39. Solve graphically

Maximize
$$z = 4x_1 + 5x_2$$

Subject to
$$x_1 - 2x_2 \le 2$$

$$2x_1 + x_2 \le 6$$

$$x_1 + 2x_2 \le 5$$

$$-x_1 + x_2 \le 5$$

$$x_1 + x_2 \ge 1$$
$$x_1, x_2 \ge 0$$

41. Solve using simplex method.

Minimize
$$z = 4x_1 + x_2$$

Subject to
$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$X_{1}, X_{2} \ge 0$$

42. Solve by using dual simplex method.

Minimize
$$z = 3x_1 + 2x_2 + x_3$$

Subject to
$$3x_1 + x_2 + 2x_3 \ge 3$$

$$-3x_{_1} + 3x_{_2} + x_{_3} \ge 6$$

$$X_1 + X_2 + X_3 \le 3$$

$$x_1, x_2, x_3 \ge 0$$

100000	- 818 11	90 H	DE 11361	100.0	98111891	401 98
					H	
100000	THE R. I.	881 H	OK. 113811	200	881 1881	200 122

K21U 0215

Reg. No.:....

Name :

Sixth Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improve.)

Examination, April 2021

(2016 Admission Onwards)

BHM603: OPERATIONS RESEARCH

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 8 questions. Each question carries 1 mark. (4x1=4)

- 1. Define transportation model.
- 2. Define path and cycle in a network.
- 3. What are changes effecting feasibility of optimal solution of an LPP?
- 4. What is PERT?
- 5. Define unbounded solution of an LP problem.
- 6. What is degeneracy in LP problem ?
- 7. Define tree and a spanning tree in a network.
- Write advantage of the dual problem.

SECTION - B

Answer any 6 questions out of 12 questions. Each question carries 2 marks. (6x2=12)

9. Convert the following LP model in the equation form

Maximize
$$z = 2x_1 + 3x_2 + 5x_3$$

Subject to
$$-6x_1 + 7x_2 - 9x_3 \ge 4$$

$$X_1 + X_2 + 4X_3 = 10$$
 -Nowten drysbages has bost too enter LGS.

$$X_1, X_3 \ge 0, X_2$$
 is unrestricted

10. Write the dual of the primal,

Maximize
$$z = 5x_1 + 12x_2 + 4x_3$$

Subject to $x_1 + 2x_2 + x_3 \le 10$
 $2x_1 - x_2 + 3x_3 = 8$
 $x_1, x_2, x_3 \ge 0$

Develop the first simplex table for the LP model using M method, after substituting artificial variables.

Minimize
$$z = 3x_1 + 6x_2$$

Subject to $x_1 + 2x_2 \le 5$
 $6x_1 + 7x_2 \le 3$
 $4x_1 + 8x_2 \ge 5$
 $x_1, x_2 \ge 0$

- 12. Explain Dijkstra's algorithm.
- 13. Write the steps in Hungarian method.
- 14. Draw the Network defined by, N = {1, 2, 3, 4, 5, 6}
 A = {(1, 2), (1, 5), (2, 3), (2, 4), (3, 4), (3, 5), (4, 3), (4, 6), (5, 2), (5, 6)}.
- 15. Explain a general assignment model.

16. Solve graphically

Maximize
$$z = 2x_1 + 3x_2$$

Subject to $x_1 + 3x_2 \le 6$
 $3x_1 + 2x_2 \le 6$
 $x_1, x_2 \ge 0$

- 17. What are the dual feasibility dual optimality condition in dual simplex algorithm?
 - 18. What are the rules for constructing the network?
 - 19. Explain steps in North-West Corner method.
 - 20. Define cut and cut capacity in network.

-3-

K21U 0215

SECTION - Chaldens memopless ent evide 33

Answer any 8 questions out of 16 questions. Each question carries 4 marks. (8×4=32)

21. Solve Graphically the following LP problem.

Maximize
$$z = 5x_1 + 4x_2$$

Subject to $6x_1 + 4x_2 \le 24$
 $x_1 + x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

- 22. A shop manufactures three products whose unit profits are \$ 2, \$ 5 and \$ 3 respectively. The company has budgeted 80 hours of labour time and 65 hours of machine time for the production of three products. The labour requirements per unit products 1, 2, and 3 are 2, 1 and 2 hours respectively. The corresponding machine time requirements per unit are 1, 1 and 2 hours. Formulate the problem as LP.
- Determine algebraically all the basic solution of the problem and classify them as feasible and infeasible.

Maximize
$$z = x_1 + x_2$$

Subject to $x_1 + 2x_2 \le 6$
 $2x_1 + x_2 \le 16$
 $x_1, x_2 \ge 0$

24. Consider the LP model

Maximize
$$z = 4x_1 + 14x_2$$

Subject to $2x_1 + 7x_2 + x_3 = 21$
 $7x_1 + 2x_2 + x_4 = 21$
 $x_1, x_2, x_3, x_4 \ge 0$

Check optimality and feasibility of the basic variables (x2, x3), inverse.

$$\begin{bmatrix} 1/7 & 0 \\ -2/7 & 1 \end{bmatrix}$$

25. Using Vogel's approximation method solve

	1	2	3	4	Supply
1	10	2	20	11	15
2	12	7	9	20	25
3	4	14	16	18	10
Demand	5	15	15	15	