K20U 0215

Reg.	No.	:	

Name :

VI Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.) Examination, April 2020 **BHM 603: OPERATIONS RESEARCH** (2016 Admissions Onwards)

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. Define Surplus variable.
- 2. In Simplex method what is meant by unbounded solution?
- 3. What is the relationship between dual and primal objective value?
- 4. What is meant by path in a graph?
- 5. There exist only finite number of basic feasible solution to an LPP. (True/False). Justify.

 $(4 \times 1 = 4)$

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

6. Obtain all the basic solutions to the following system of linear equation :

$$x_1 + 2x_2 + x_3 = 4$$
 and $2x_1 + x_2 + 5x_3 = 5$

7. Write the LPP in the standard form :

Maximize
$$f = 2x_1 + x_2 - x_3$$
,
Subject to $2x_1 - 5x_2 + 3x_3 \le 4$,
 $3x_1 + 6x_2 - x_3 \ge 2$,
 $x_1 + x_2 + x_3 = 4$, x_1 , x_2 , $x_3 \ge 0$.

- 8. Define optimal solution and basic feasible solution to an LPP.
- 9. What is the procedure to identify entering variable in case of dual simplex method?
- 10. Define artificial variable along with an example.
- 11. Draw the network defined by $N = \{1, 2, 3, 4, 5, 6\}$ $A = \{(1, 2), (1, 5), (2, 3), (2, 3), (2, 3), (2, 3), (3, 4), (4, 5)$ (2, 4) (3, 4) (3, 5) (4, 3) (4, 6) (5, 2) (5, 6)}.

P.T.O.

- 12. Explain 8-gallon jug puzzle.
- 13. Define critical and non-critical activity.
- 14. What are the three methods to obtain an initial feasible solution to a transportation problem ? (6x2=12)

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

- 15. Explain critical path computation.
- 16. Describe maximum flow algorithm.
- 17. Find the maximum non negative flow in the network described below. Arc (V_j, V_k) being defined as (j, k), V_j is the source and V_k is the sink. Arc: (a, 1) (a, 2) (1,2) (1,3) (1,4) (2,4) (3,2) (3,4) (4,3) (3,b) (4,b) Capacity: 8 10 3 4 2 8 3 4 2 10 9
- Write the algorithm for Vogel's Approximation Method and Least Cost Method.
- 19. Mathematically represent Transportation and Assignment Model.
- 20. Solve the assignment problem.

	1	2	3	4
1	1	4	6	3
2	4	7	10	9
3	4	5	11	7
4	8	7	8	5

- 21. Define dual problem and explain its characteristics.
- 22. Check the optimality and feasibility of LPP with basic variable (x_2, x_4) and inverse = $\begin{pmatrix} 1/7 & 0 \\ -2/7 & 1 \end{pmatrix}$.

- 24. Explain the algorithm of Big M method.
- 25. Use Simplex method to solve the LPP.

Maximize
$$f = x_1 + 2x_2$$

Subject to $-x_1 + 2x_2 \le 8$, $x_1 + 2x_2 \le 12$, $x_1 - x_2 \le 3$, x_1 , $x_2 \ge 0$.

26. Solve using dual simplex method

Minimize
$$f = x_1 + 3x_2 + 2x_3$$

Subject to $4x_1 - 5x_2 + 7x_3 \le 8$, $2x_1 - 4x_2 + 2x_3 \ge 2$, $x_1, x_2, x_3 \ge 0$.
(8x4=32)

K20U 0215

SECTION - D

-3-

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

27. Solve the LPP

Maximize
$$f = 4x_1 + 5x_2$$
,
Subject to $x_1 - 2x_2 \le 2$, $2x_1 + x_2 \le 6$, $x_1 + 2x_2 \le 5$, $-x_1 + x_2 \le 2$;
 $x_1, x_2 \ge 0$.

28. Minimize f = $4x_1 + 5x_2$, Subject to $2x_1 + x_2 \le 6$, $x_1 + 2x_2 \le 5$, $x_1 + 2x_2 \ge 1$, $x_1 + 4x_2 \ge 2$; $x_1, x_2 \ge 0$.

29. Find the minimum cost of transportation:

	A	В	С	
1	2	1	3	10
2	4	5	7	25
3	6	0	9	25
4	1	3	5	30
	20	20	15	

30. A project consist of 8 activities with the following relevant information :

Activity	Α	В	C	D	E	F	G	Н
Predecessor	-	45	-	Α	В	С	D,E	F,G
Optimistic time	1	1	2	1	2	2	3	1
Most likely time	1	4	2	1	5	5	6	2
Pessimistic time	7	7	8	1	14	8	15	

Draw the PERT network and find out the expected project completion time and the variance of project length. (2×6=12)