K19U 0763

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

- 27. For the problem Min $x_1 + x_2$ subject to $2x_1 + x_2 \ge 8$, $3x_1 + 7x_2 \ge 21$, $x_1, x_2 \ge 0$. Find the dual and solve graphically the primal and dual, verify the optimal values.
- 28. Find the minimum cost solution for the following assignment problem :

	1	2	3	4	5
1	-2	-4	-8	-6	- 1
2	0	- 9	-5	-5	-4
3	-3	-8	-9	-2	-6
4	- 4	-3	-1	0	-3
5	-9	-5	-8	-9	-5

- 29. Explain economical interpretation of duality.
- 30. Find the minimum time of completion of the project, when time (in days) of completion of each task is as follows:

Task	Α	В	С	D	E	F	G	Н	1
Time	23	8	20	16	24	18	19	4	10

The relation among the task are A < D, E; B, D < F; C < G; B, G < H; F, G < I (W < X, Y mean X and Y cannot start until W is completed, X, Y < W means W $(2 \times 6 = 12)$ cannot start until X and Y both are completed).

Reg. No.:.... Name :

K19U 0763

VI Semester B.Sc. Hon's (Mathematics) Degree (Reg.) Examination, April 2019 (2016 Admission)

BHM 603: OPERATIONS RESEARCH

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. Define slack variable.
- 2. In a set of $m \times n$ equations (m < n) what is the maximum number of corner points?
- 3. Define an optimal solution.
- 4. Name the three methods to find the basic feasible solution of a transportation problem.
- 5. What are the different methods to solve shortest route algorithm?

 $(4 \times 1 = 4)$

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

- 6. Show that the system of linear equation $2x_1 + x_2 x_3 = 2$ and $3x_1 + 2x_2 + x_3 = 3$ has a degenerate solution.
- 7. Write the LPP in the standard form

Maximize
$$f = 2x_1 + x_2 - x_3$$
,
Subject to $2x_1 - 5x_2 + 3x_3 \le 4$,
 $3x_1 + 6x_2 - x_3 \ge 2$,
 $x_1 + x_2 + x_3 = 4$, x_1 , x_2 , $x_3 \ge 0$.

P.T.O.

-2-

8. Write the dual of the LPP

Maximize
$$f = 2x_1 + x_2 - x_3$$
,
Subject to $2x_1 - 5x_2 + 3x_3 \le 4$,
 $3x_1 + 6x_2 - x_3 \ge 2$,
 $x_1 + x_2 + x_3 = 4$, x_1 , x_2 , $x_3 \ge 0$.

- 9. Which formula is used to economically interpret dual constraint?
- 10. Define artificial variable along with an example.
- 11. Define any two estimates of PERT Network.
- 12. What is meant by average duration time and variance in PERT?
- 13. Define critical and non-critical activity.
- 14. Solve the assignment problem.

	Α	В	C
1	120	100	80
2	80	90	110
3	110	140	120

 $(6 \times 2 = 12)$

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

- 15. Describe Floyd's algorithm.
- 16. Explain Dijkstra's algorithm and find the shortest route from city 1 to city 5 with allowed routes between them and given length in miles as follows:

Douton	(1.2)	(1.3)	(2.3)	(4, 2)	(3, 4)	(3, 5)	(4, 5)
			20	15	10	60	50
Length	100	30	20	15	10	- 00	

- 17. Explain Linear Programming model for shortest route problem.
- Write the algorithm for Vogel's Approximation Method and North West Corner Rule.

-3-

K19U 0763

- 19. Mathematically represent transportation and assignment model.
- 20. Find the minimum cost of transportation of the following source and destination.

	1	2	3	4	
1	10	2	20	11	15
2	12	7	9	20	25
3	4	14	16	18	10
	5	15	15	15	

- 21. Prove that dual of a dual problem is primal.
- 22. Check the optimality and feasibility of LPP with basic variable (x_2, x_4) and

inverse =
$$\begin{pmatrix} 1/7 & 0 \\ -2/7 & 1 \end{pmatrix}$$

- Compare CPM and PERT, explain similarities and mention where they differ with atleast five points.
- 24. Explain the algorithm of II phase method.
- 25. Solve using dual simplex method

Minimize
$$f = x_1 + 3x_2 - 2x_3$$
,
Subject to $4x_1 - 5x_2 + 7x_3 \le 8$,
 $2x_1 - 4x_2 + 2x_3 \ge 2$,
 $x_1, x_2, x_3 \ge 0$

26. Solve graphically the following LPP

Maximize
$$5x_1 + 3x_2$$

Subject to $4x_1 + 5x_2 \le 10$, $5x_1 + 2x_2 \le 10$, $3x_1 + 8x_2 \le 12$, $x_1, x_2 \ge 0$

 $(8 \times 4 = 32)$