Reg. No.:

K21U 0217

Name :	1/27	1:11
	((or,)	
VI Semester B.Sc. Hon's (Ma	athematics) Degre	e (Supple.
Examination	n, April 2021	E 2/

(2014 – 2015 Admissions)
BHM601 – MEASURE AND INTEGRATION

Time: 3 Hours

Max. Marks: 80

Answer all the 10 questions.

 $(1 \times 10 = 10)$

- 1. Define simple function.
- 2. Find $\limsup x_n$ where sequence $(x_n) = (n)$.
- 3. Define σ algebra.
- 4. Give an example of measurable space.
- 5. Define Borel Set.
- 6. Define measure.
- 7. Give an example of σ finite measure.
- 8. Write the integral value of characteristic function defined on the interval [1, 5].
- 9. Define Pseudo norm.
- 10. State Holders Inequality.

Answer any 10 short answer questions out of 14.

(3×10=30)

- 11. Show that a characteristic function defined on a set E is measurable if and only if E is X-measurable set.
- 12. Give an example of a σ -algebra on the set $X = \{1, 2, 3, 4, 5\}$.
- 13. Show that if f and g are real valued measurable function then f + g and f g are measurable.

P.T.O.

14. Let (f_n) be the sequence of extended real valued measurable function and it converges to f. Then show that f is also real valued extended measurable function.

-2-

- 15. Let μ be a measure defined on σ algebra X. If E and F belongs to X with E \subset F and μ (E) < ∞ then show that μ (F/E) = μ (F) μ (E).
- 16. Show that a measurable function f belongs to L if and only if |f| belongs to L.
- 17. Define Counting Measure.
- 18. State and prove Minkowski's Inequality.
- 19. If f belongs to M^+ , show that f(x) = 0 if and only if $\int f d\mu = 0$.
- 20. State and prove Riesz-Fischer theorem.
- 21. Show that if the sequence (fn) converges to f in Lp then it is a cauchy sequence.
- 22. If $f \in L_p$ and $g \in L_q$ where p > 1 and (1/p) + (1/q) = 1. Then show that $f g \in L_1$.
- 23. Let (g_n) be a sequence in M^+ , then $\int \left(\sum_{n=1}^{\infty}\right) g_n d\mu = \sum_{n=1}^{\infty} \left(\int g_n d\mu\right)$.
- 24. Define the linear space L_{∞} also show that if $f \in L_{\infty}$ then $\left|f(x)\right| \leq \left\|f\right\|$

Answer any 6 short essay questions out of 9.

 $(6 \times 5 = 30)$

- 25. If f is a non negative function in M(X, X) then their exist a sequence (ϕ_n) in M(X, X) such that
 - a) $0 \le \phi_n(x) \le \phi_{n+1}(x)$ for $x \in X, n \in \mathbb{N}$
 - b) $f(x) = lim\phi_n(x)$ for each $x \in X$
 - c) Each ϕ_n has only a finite number of real values.
- 26. Let μ be measure defined on σ -algebra X. Then show that if (E_n) is a increasing sequence in X then $\mu\left(\bigcup_{n=1}^{\infty}E_n\right)=\lim\mu(E_n)$.
- 27. Let μ be a measure on X and A is a fixed set in X then show that the function λ defined on X defined by $\lambda(E) = \mu(E \cap A)$ is a measure.
- 28. If ϕ and ψ are two measurable functions in M⁺(X, X) then show that $\int (\phi + \psi) d\mu = \int \phi d\mu + \int \psi d\mu.$

- 29. State and prove monotone convergence theorem.
- 30. State and prove Fatous Lemma.
- 31. If f belongs to M⁺ and if λ is defined on X by $\lambda(E) = \int_E f d\mu$, then show that λ is a measure.
- 32. Suppose that for some $t_0 \in [a,b]$, the function $x \to f(x,t_0)$ is integrable on X, that $\partial f/\partial t$ exists on $X \times [a,b]$ and that there exist an integrable function g on X such that $\left|\frac{\partial f}{\partial t}(x,t)\right| \leq g(x)$ and if $F(t) = \int f(x,t) d\mu(X)$. Show that $\frac{dF}{dt}(t) = \frac{d}{dt} \int f(x,t) d\mu(x)$.
- 33. Show that the linear space L_{∞} is a completed normed space.

Answer any one question out of 2.

 $(1 \times 10 = 10)$

K21U 0217

- 34. State and prove Lebesgue Dominated Convergence theorem.
- 35. If $1 \le p < \infty$ then show that the space L_p is a complete linear space under the norm $\|f\|_p = \left\{\int |f|^p d\mu\right\}^{\frac{1}{p}}$.