K19U 0775

PART - D

(Essay Questions)

Answer any 1 question (34-35). Each question carries 10 marks.

 $(1 \times 10 = 10)$

- 34. a) If ϕ and ψ are simple functions in $M^+(X,\chi)$ and $c\geq 0$, then show that $\lceil c\phi d\mu = c \lceil \phi d\mu, \text{ and } \rceil (\phi + \Psi) \ d\mu = \lceil \phi d\mu + \lceil \Psi d\mu \rceil$
 - b) If λ is defined for E in χ by λ (E) = $\int \phi \chi_E d\mu$, then show that λ is a measure o χ .
- 35. a) State and prove Monotone Convergence Theorem.
 - b) If f, $g\in M^+$ and $c\geq 0$, then show that $f+g\in M^+$ and $\int (f+g)\ d\mu=\int f\ d\mu+\int g d\mu\,.$

K19U 0775

Reg. No. :

Name :

VI Semester B.Sc. Hon's (Mathematics) Degree (Supplementary)

Examination, April 2019 (2013-'15 Admissions)

BHM 601: MEASURE AND INTEGRATION

Time: 3 Hours

Max. Marks: 80

PART - A

(Objective Type Questions)

Answer all questions (1-10). Each question carries 1 mark.

 $(10 \times 1 = 10)$

- 1. A finite linear combination of characteristic functions is called
- 2. Define Lebesgue integral of a nonnegative function f.
- Define σ-algebra.
- 4. Define Borel σ-algebra.
- 5. Define positive and negative parts of a real function.
- 6. When we say that a measure is σ -finite ?
- 7. What do you mean by a measure concentrated at a point ?
- 8. Give an example of a measure which is σ -finite but not finite.
- 9. Define semi-norm.
- 10. Define Lebesgue space.

PART - B

(Short Answer Type)

Answer any ten questions (11-24). Each question carries 3 marks.

 $(10 \times 3 = 30)$

11. Define extended borel $\sigma\text{-algebra}$ and show that it is a $\sigma\text{-algebra}$ on $\mathbb R$.

P.T.O.

- 12. Show that an extended real valued function f is measurable if and only if the sets $A = \{x \in X : f(x) = +\infty\}$, $B = \{x \in X : f(x) = -\infty\}$ belongs to the σ -algebra χ and the real valued function f_1 defined by $f_1(x) = \begin{cases} f(x) & \text{if } x \notin A \cup B \\ 0 & \text{if } x \in A \cup B \end{cases}$ is measurable.
- 13. Let $\{f_n(x)\}$ be a sequence in $M(X, \chi)$ and define the functions $f(x) = \inf f_n(x)$ and $F(x) = \sup f_n(x)$. Show that $f, F \in M(X, \chi)$.
- 14. Let (X, χ, μ) be a measure space and let $\{E_n\}$ be a sequence in χ . Then show that μ (lim inf E_n) \leq lim inf $\mu(E_n)$.
- 15. If f, $g \in M^+(X, \chi)$ and $f \le g$, then show that $\int f d\mu \le g d\mu$.
- 16. If $f \in L$ and λ is defined on χ to \mathbb{R} by λ (E) = $\int_{E} f \, d\mu$. Then show that λ is a charge.
- 17. Let $\{g_n\}$ be a sequence in M+, then show that $\int \left(\sum_{n=1}^{\infty} g_n\right) d\mu = \sum_{n=1}^{\infty} \left(\int gn \ d\mu\right).$
- 18. Show that a measurable function f belongs to L if and only if $|f| \in L$. Also show that $\left| \int f d\mu \right| \le \int |f| \ d\mu$.
- 19. Let (X, χ, μ) be a measure space. Show that N_{μ} , defined by $N_{\mu}(f) = \int |f| \ d\mu$. $f \in L(X, \chi, \mu)$ is a semi-norm on the space $L(X, \chi, \mu)$.
- 20. Show that the Lebesgue space $L_1 = L_1(X, \chi, \mu)$ is a normed linear space.
- 21. If f and g are simple functions in M(X, χ), then show that $\phi = \sup\{f, g\}$ and $\psi = \inf\{f, g\}$ are also simple functions in M(X, χ).
- 22. State Cauchy-Bunyakovskii-Schwarz inequality and Minkowski's inequality.
- Define Cauchy sequence and show that every convergent sequence in L_p space is Cauchy sequence.
- 24. Define L space. Also give a norm on L which is complete.

PART - C

(Short Essay Type)

Answer any 6 questions (25-33). Each question carries 5 marks.

 $(6 \times 5 = 30)$

- 25. Show that the following statements are equivalent for a function $f:X\to\mathbb{R}$:
 - a) For every $\alpha \in \mathbb{R}$, the set $A_{\alpha} = \{x \in X : f(x) > \alpha\} \in X$.
 - b) For every $\alpha \in \mathbb{R}$, the set $B_{\alpha} = \{x \in X : f(x) \le \alpha\} \in X$.
 - c) For every $\alpha \in \mathbb{R}$, the set $C_{\alpha} = \{x \in X : f(x) \ge \alpha\} \in X$.
 - d) For every $\alpha \in \mathbb{R}$, the set $D_{\alpha} = \{x \in X : f(x) < \alpha\} \in X$.
- 26. Let f and g are measurable real valued functions and let c be a real number. Then show that the functions cf, f²,f + g, fg, |f| are also measurable.
- 27. Let μ be a measure defined on a σ -algebra χ . If $\{E_n\}$ is an increasing sequence in χ , then show that $\mu\bigg(\bigcup_{n=1}^{\infty}E_n\bigg)=\lim \mu(E_n)$
- 28. State and prove Fatou's lemma.
- 29. If μ is a charge on χ , let v be defined for $E \in \chi$ by $v(E) = \sup \sum_{j=1}^{n} |\mu(A_j)|$, where the supremum is taken over all finite disjoint collections $\{A_j\}$ in, χ with $E = U_j A_j$. Show that v is a measure on χ .
- 30. State and prove Lebesgue Dominated Convergence Theorem.
- 31. Suppose that f belongs to M⁺. Then show that f(x) = 0 μ -almost everywhere on χ if and only if $\int f d\mu = 0$.
- 32. State and prove Holder's inequality in L_D space.
- 33. Suppose that for some $t_0 \in [a, b]$, the function $x \to f(x, t_0)$ is integrable on χ , that $\partial f/\partial t$ exists on $X \times [a, b]$, and that there exists an integrable function g on X such that $\left|\frac{\partial f}{\partial t}(x, t)\right| \le g(x)$. Then show that the function F defined by $F(x) = \left[f(x, t) \ d\mu(x) \right]$ is differentiable on [a, b].