Suppose N is oven, say N = 2M, $z \in \Gamma(\Sigma_s)$, and $x, y, w \in \Gamma(\Sigma_{ss})$. Then prove that D(z) = w = D(z + U(w)) and U(x) = U(y) = U(x + y).

Suppose $z \in U(z + z)$ and $(z - z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(z) e^{zz} dz = 0$ for all $z \in \mathbb{Z}$. Then prove that y(z) = 0 a.e.

Suppose $z \in U(z + z) = U(z + z)$ is a bounded, foundation-invariant linear fraction and that for each $z \in U(z)$ there exists $z \in U(z)$ such that $z \in U(z) = u(z)$ and $z \in U(z)$ is ofthonormal in $z \in U(z)$. Define a sequence $z \in U(z)$ by $z \in U(z) = (-1)^{\infty}$ and $z \in U(z) = (-1)^{\infty}$ by $z \in U(z)$. Then prove that $z \in U(z)$ are $z \in U(z)$ in $z \in U(z)$. Define a sequence $z \in U(z)$ by $z \in U(z)$ and $z \in U(z)$ and $z \in U(z)$ and $z \in U(z)$ by $z \in U(z)$ by $z \in U(z)$ and $z \in U(z)$ by $z \in U(z)$ by $z \in U(z)$ and $z \in U(z)$ and $z \in U(z)$ and $z \in U(z)$ by $z \in U(z)$ by $z \in U(z)$ and $z \in U(z)$ and $z \in U(z)$ and $z \in U(z)$ by $z \in U(z)$ by $z \in U(z)$ by $z \in U(z)$ and $z \in U(z)$ and $z \in U(z)$ by $z \in U(z)$ by $z \in U(z)$ by $z \in U(z)$ and $z \in U(z)$ by $z \in U(z)$ and $z \in U(z)$ by $z \in U(z)$ by $z \in U(z)$ and $z \in U(z)$ by $z \in U(z)$ by $z \in U(z)$ and $z \in U(z)$ before a first-stage wavelet system) in $z \in U(z)$

and industricity $f(\theta + \pi) \circ f(\theta + \pi)$ is unstary for all $f(\theta, \pi)$. Define $f(\theta + \pi) \circ f(\theta + \pi)$ and industricity $f(\theta + \pi) \circ f(\theta + \pi)$ is unstable $f(\theta + \pi) \circ f(\theta + \pi)$. Befine $f(\theta + \pi) \circ f(\theta + \pi) \circ f(\theta + \pi)$ in $f(\theta + \pi) \circ f(\theta + \pi)$ is a complete orthonormal set (hence a prestage wavelet system) for $f(\theta)$.

34. Suppose z c riz, j and k = 1. Then prove that for any m = 's

K21U 0221

g. No. :	ALEGE.
me :	No.

VI Semester B.Sc. Hon's (Mathematics) Degree (Supplementary)
Examination, April 2021
(2014-2015 Admissions)

BHM 605(A): DISCRETE FOURIER ANALYSIS

Time: 3 Hours

Max. Marks: 80

Answer all ten questions

(10×1=10)

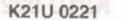
- 1. State Parseval's relation.
- Define discrete Fourier transform.
- 3. When we say that a matrix is circulant?
- Describe first-stage wavelet basis for ℓ²(Z_N).
- 5. Define conjugate reflection of $w \in \ell^2(\mathbb{Z}_N)$. (x) = (n)x land aways $(x)^2 + x + x + y = 10$
- 6. Define pth-stage wavelet basis for $\ell^2(\mathbb{Z}_N)$.
- 7. What do you mean by completeness property of $\ell^2(\mathbb{Z})$?
- 8. Define trigonometric system and trigonometric polynomial.
- 9. Define down sampling operator.
- 10. Define homogeneous wavelet system for $\ell^2(\mathbb{Z})$.

Answer any 10 short answer questions out of 14:

(10×3=30)

- 11. Let $\hat{u} = (\sqrt{2}, 1, 0, 1)$ and $\hat{v} = (0, 1, \sqrt{2}, -1)$. Find $\{v, R_2u, R_2v\}$ for $\ell^2(Z_4)$.
- 12. State and prove Fourier inversion formula.
- 13. Let $w_N = e^{-2\pi i/N}$. Then prove that $\hat{z}(m) = \sum_{n=1}^{N-1} z(n) \omega_N^{mn}$
- 14. For any $w \in \ell^2(\mathbb{Z}_N)$, prove that $w * \delta = w$. Where δ is the Dirac delta function.

P.T.O.



15. Suppose $z, w \in \ell^2(\mathbb{Z}_k)$. For any $k \in \mathbb{Z}$, then prove that $z * \hat{w}(k) = \langle z, R_k w \rangle$.

-2-

- 16. Suppose $M \in \mathbb{N}$, N = 2M and $z \in \ell^2(\mathbb{Z}_N)$. Define $z^* \in \ell^2(\mathbb{Z}_N)$ by $z^*(n) = (-1)^n z(n)$ for all n. Then prove that $(z^*)^n (n) = \hat{z} (n + M)$ for all n.
- Define Fourier series of f ∈ L¹ ((-π, π)).
- 18. Suppose N is divisible by 2^p . Suppose u, $v \in \ell^2(\mathbb{Z}_*)$ are such that the system matrix A(n) is unitary for all n. Let u, = u and v, = v and for all $\ell = 2, 3, ..., p$, define u_{ℓ} by equation $u_{\ell}(n) = \sum_{i=0}^{2^{\ell-1}} u_{i} \left(n + \frac{kN}{2^{\ell-1}} \right)$ and v_{ℓ} similarly with v_{i} in place of u₁. Then prove that u₁, v₁, u₂, v₂, ..., u_p, v_p is a pth-stage wavelet filter sequence.
- 19. Prove that the trigonometric system is an orthonormal set in $L^2([-\pi, \pi))$.
- 20. Suppose H is a Hilbert space and T: H → H is a bounded linear transformation. Suppose the series $\Sigma_{n \in \mathbb{Z}} \mathbf{x}_n$ converges in H. Then prove that $\mathbf{T} \left[\sum \mathbf{x}_n \right]$ where the series on the right converges in H.
- 21. For $z \in \ell^2(\mathbb{Z})$, prove that $z(n) = (\hat{z})^{\vee}(n)$. $\exists z \in \ell^2(\mathbb{Z})$ who noticellar exposings entired $\exists z$
- 22. Suppose w, $z \in \ell^1(\mathbb{Z})$. Prove that set $\{R_{yy}w\}_{y=0}$ is orthonormal if and only if $|\hat{\mathbf{w}}(\theta)|^2 + |\hat{\mathbf{w}}(\theta + \pi)|^2 = 2 \text{ for all } \theta \in [0, \pi).$
- 23. Suppose $z, w \in \ell^2(\mathbb{Z})$. Prove that U(z * w) = U(z) * U(w).
- 24. Suppose $z \in \ell^2(\mathbb{Z})$. Prove that $(U(z))^{\wedge}(\theta) = \hat{z}(2\theta)$ for all θ .

Answer any 6 short answer questions out of 9:

 $(6 \times 5 = 30)$

- 25. Prove that the set $\{E_0, \ldots, E_{N-1}\}$ is an orthonormal basis for $\ell^2(\mathbb{Z}_N)$.
- 26. Let z = (1, 1, 0, 2) and w = (i, 0, 1, i) be vectors in $\ell^2(\mathbb{Z}_4)$. Find z * w.
- 27. Let $b \in \ell^2(\mathbb{Z}_N)$, and let T_h be the convolution operator associated with b. Then prove that T_k is translation invariant. The prove that T_k is translation invariant.
- 28. Suppose $M\in\mathbb{N}$, N=2M and $u\in\mathcal{C}(\mathbb{Z}_N)$ is such that $\{R_{s_k}u\}_{k=0}^{M-1}$ is an orthonormal set with M elements. Define $v \in \ell^2(\mathbb{Z}_n)$ by $v(k) = (-1)^{k-1} u(1-k)$ for all k. Then prove that $\{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1}$ is a first-stage wavelet basis for $\ell^2(\mathbb{Z}_N)$.

K21U 0221

- 29. Suppose N is even, say N = 2M, $z \in \ell^2(\mathbb{Z}_N)$, and x, y, $w \in \ell^2(\mathbb{Z}_{N/2})$. Then prove that D(z) * w = D(z * U(w)) and U(x) * U(y) = U(x * y).
- 30. Suppose $f \in L^1([-\pi, \pi))$ and $\left\langle f, e^{in\theta} \right\rangle = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta = 0$ for all $n \in \mathbb{Z}$. Then prove that $f(\theta) = 0$ a.e.
- 31. Suppose T: L² ($[-\pi, \pi)$) \rightarrow L² ($[-\pi, \pi)$) is a bounded, translation-invariant linear transformation. Then prove that for each $m \in \mathbb{Z}$, there exists $\lambda_m \in \mathbb{C}$ such that $T(e^{im\theta}) = \lambda_{-}e^{im\theta}$.
- 32. Suppose $u \in \ell^1(\mathbb{Z})$ and $\{R_{2k}u\}_{k \in \mathbb{Z}}$ is orthonormal in $\ell^2(\mathbb{Z})$. Define a sequence $v \in \ell^1(\mathbb{Z})$ by $v(k) = (-1)^{k-1} \overline{u(1-k)}$. Then prove that $\{R_{2k}v\}_{k\in\mathbb{Z}} \cup \{R_{2k}u\}_{k\in\mathbb{Z}}$ is a complete orthonormal system (hence a first-stage wavelet system) in $\ell^2(\mathbb{Z})$.
- 33. Let $p \in \mathbb{N}$. For $\ell = 1, 2, ..., p$, suppose that $u, v \in \ell^1(\mathbb{Z})$ and the system matrix $A_{\ell}(\theta) = \frac{1}{\sqrt{2}} \begin{bmatrix} \hat{u}_{\ell}(\theta) & \hat{v}_{\ell}(\theta) \\ \hat{u}_{\ell}(\theta + \pi) & \hat{v}_{\ell}(\theta + \pi) \end{bmatrix} \text{ is unitary for all } \theta \in [0, \pi). \text{ Define } f_1 = v_1, \ g_1 = u_1$ and inductively, for $\ell = 2, 3, ..., p f_{\ell} = g_{\ell-1} * U^{\ell-1}(v_{\ell}), g_{\ell} = g_{\ell-1} * U^{\ell-1}(u_{\ell})$. Define B as B = $\{R_{a}, f, : k \in \mathbb{Z}, \ell = 1, 2, ..., p\} \cup \{R_{a}, kg, : k \in \mathbb{Z}\}.$ Then prove that B is a complete orthonormal set (hence a pth-stage wavelet system) for $\ell^2(\mathbb{Z})$.

Answer any one essay question out of 2:

 $(1 \times 10 = 10)$

- 34. Suppose $z \in \ell^2(\mathbb{Z}_n)$ and $k \in \mathbb{Z}$. Then prove that for any $m \in \mathbb{Z}$, $(R_z)^{\wedge}(m) = e^{-2\pi i m k/N} \hat{z}(m).$
- 35. Suppose $M \in \mathbb{N}$, N = 2M, and $w \in \ell^2(\mathbb{Z}_N)$. Then prove that $\{R_{2k}w\}_{k=0}^{M-1}$ is an orthonormal set with M elements if and only if $|\hat{w}(n)|^2 + |\hat{w}(n+M)|^2 = 2$ for n = 0, 1, ..., M - 1.