NICE OF STREET

S4. Lot the analytic at a point z₀. Prove that it has a zero of order m at z₀ it and only

is a function of which is analytic and non-zero at 2,, such that

 $-d+1 = s \sin \theta$

CU VILLERU A

K16U 1279

VI Semester B.Sc. Hon's (Mathematics) Degree (Regular)

Examination, May 2016

BHM - 604 : COMPLEX ANALYSIS - II

Time: 3 Hours Max. Marks: 80

Answer all the ten questions:

(10×1=10)

- 1. What do you mean by an isolated singular point?
- 2. Define the term 'residue' of a complex function at a singular point.
- 3. What do you mean by a pole?
- 4. State Jordan's Lemma.
- 5. What do you mean by meromorphic functions?
- 6. State argument principle.
- 7. What do you mean by fixed points of a transformation?
- 8. Define a linear fractional transformation.
- 9. Find the critical points of the transformation $w = z^2$.
- 10. What do you mean by harmonic conjugate of a function?

Answer any 10 short answer questions out of 14:

(10×3=30)

- 11. Find the residue of $f(z) = \frac{1}{z + z^2}$ at z = 0.
- What are the different types of isolated singular points? Give examples in each case.

- 13. Find the residue of $f(z) = \frac{z}{z^4 + 4}$ at the isolated singular point $z_0 = 1 + i$.
- 14. Evaluate $\int_{C} \tan z dz$ where C is positively oriented circle |z| = 2.
- 15. Find the zeroes and their orders of $f(z) = z(e^z 1)$.
- 16. If C denote the unit circle |z| = 1, described in the positive sense, determine the winding number of $f(z) = z^2$.
- 17. Determine the number of roots of the equation $z^7 4z^3 + z 1 = 0$ inside the circle |z| = 1.
- 18. What is the image of the infinite strip 0 < x < 1 under the transformation w = iz?
- 19. Describe the transformation $w = \frac{1}{z}$
- 20. Find the image of the line y = c under the map $w = \frac{1}{z}$
- Express the bilinear transformation as a composition of linear transformations and inversions.
- 22. What do you mean by a conformal mapping? Give an example.
- 23. Find the points where $w = \sin z$ is not conformal.
- 24. Find the local inverse of the transformation $w = e^z$ at the point $2\pi i$.

Answer any 6 short answer questions out of 9:

(6×5=30

- 25. Evaluate $\int_C z^2 \sin\left(\frac{1}{z}\right) dz$ where C is the positively oriented unit circle |z| = 1.
- 26. State and prove Cauchy's Residue theorem.
- 27. If z_0 is a pole of a function f, prove that $\lim_{z\to z_0} f(z) = \infty$.

- 28. Using Residue theorem evaluate the integral $\int_{0}^{2\pi} \frac{d\theta}{(5-3\cos\theta)^2}$
- 29. State and prove Rouche's theorem.
- 30. Show that the transformation $w = \frac{1}{z}$ transforms circles into circles and lines.
- 31. Find the bilinear transformation which maps the points –1, 0, 1 into the points –i, 1, i respectively.
- 32. What do you mean by angle of rotation and scale factor? Also find the angle of rotation and scale factor at the point 1 + i when $w = z^2$.
- 33. Find the harmonic conjugate of u(x, y) = xy. Also write the resulting analytic function in terms of the complex variable z.

Answer any one essay questions out of 2:

 $(1 \times 10 = 10)$

- 34. Let f be analytic at a point z_0 . Prove that it has a zero of order m at z_0 if and only if there is a function g, which is analytic and non-zero at z_0 , such that $f(z) = (z z_0)^m g(z)$.
- 35. Evaluate $\int_0^\infty \frac{x^2}{x^6 + 1} dx$