

- 31. If heat is generated at a constant rate throughout a bar of length  $L = \pi$  with initial temperature f (x) and the ends at x = 0 and  $\pi$  are kept at temperature 0, the heat equation is  $u_t = c^2 u_{xx} + H$  with constant H > 0. Solve the problem.
- 32. Find the potential in the rectangle  $0 \le x \le 20$ ,  $0 \le y \le 40$  where upper side is kept at potential 220V and whose other sides are grounded.
- 33. Find the general solution of  $(1 + x^2)y'' + 2xy' 2y = 0$  in terms of power series in x. Can you express the solution by means of elementary functions. (6x5=30)

## SECTION - D

Answer any 1 questions out of 2 questions. Each question carries 10 marks.

- 34. What is least square approximation of Legendre polynomials?
- 35. A rod of length I is heated so that its ends A and B are at zero temperature. If initially its temperature is given by  $u = \frac{cx(I-x)}{I^2}$ , find the temperature at time t. (1×10=10)

THAT TO SERVE

K17U 2663

Max. Marks: 80

|      |     |   | IN A BINES IN INST |
|------|-----|---|--------------------|
| Reg. | No. | : |                    |

Name : .....

V Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)

Examination, November 2017

BHM503 : SPECIAL FUNCTIONS AND PARTIAL DIFFERENTIAL EQUATIONS

(2013 - 15 Admissions)

Time: 3 Hours

## SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. What is the general form of homogeneous second order linear differential equation?
- 2. What is the general form of Legendre's equation?
- 3. What is Γp ?
- 4. Prove that  $\frac{d}{dx} \left[ x^p J_p(x) \right] = x^p J_{p-1}(x)$ .
- 5. Define a periodic function.
- 6. What is the Euler formula for a<sub>0</sub>?
- 7. Define an even function.
- 8. What is the general form of one dimensional wave equation?
- 9. What is the Fourier series solution of heat equation?
- 10. State Bessel's expansion theorem.

 $(10 \times 1 = 10)$ 

P.T.O.

## SECTION - B.

Answer any 10 questions out of 14 questions. Each question carries 3 marks.

11. Use the ratio test to verify that R = 0,  $\infty$  and 1 for the series

i) 
$$\sum_{0}^{\infty} n! x^n$$

ii) 
$$\sum_{0}^{\infty} \frac{x^{n}}{n!}$$

iii) 
$$\sum_{0}^{\infty} x^{n}$$
.

- 12. Determine the nature of the point x = 0 for the differential equation  $x^2y'' + \sin xy = 0$ .
- 13. Verify that (1 + x)p = F(-p, b, b, -x).
- 14. Find the first two terms of the Legendre series of

$$f(x) = 0 \text{ if } -1 \le x \le 0$$
$$= x \text{ if } 0 \le x \le 1$$

- 15. Prove that  $\Gamma p = (p-1) \Gamma (p-1)$ .
- 16. Prove that  $\cos x = J_0(x) 2J_2(x) + 2J_4(x) \dots$
- 17. Find the Fourier series of the function

$$f(x) = 0 \text{ if } -2 < x, -1$$
  
= k if -1 < x < 1  
= 0 if 1 < x < 2, where p = 2L = 4, L = 2.

- 18. Find the temperature u (x, t) in a laterally insulated copper bar 80 cm long if the initial temperature is  $100\sin\left(\frac{\pi x}{80}\right)^{\circ}$ C and the ends are kept at 0°c. How long it will take for the maximum temperature of the bar to drop to 50°C? Physical data for copper density 892 gm/cm³, specific heat 0.092cal/(gm°c), thermal conductivity 0.95cal/(cmsec°c).
- 19. Find the power series solution of y' = y.

- 20. What is meant by regular singular point?
- 21. State the orthogonal property of Legendre polynomial.
- 22. Obtain the solution of the heat equation  $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$  by the method of separation of variables.
- 23. Expand f (x) =  $x^3$  in  $-\pi < x < \pi$  in a Fourier series.
- 24. Find half range cosine series for  $f(x) = x^2$  in  $0 \le x \le \pi$ . (10×3=30)

## SECTION-C

Answer any 6 questions out of 9 questions. Each question carries 5 marks.

- 25. Find the nature of the point at infinity for the differential equation  $x^2y'' + 4xy' + 2y = 0$ .
- 26. Derive the Rodrigue's formula for Legendre polynomials.
- 27. With the usual notation prove that

i) 
$$J'_{0}(x) = -J_{1}(x)$$

ii) 
$$\frac{d}{dx}[xJ_1(x)] = xJ_0(x)$$
.

- 28. Show that in the range,  $0 \le x \le \pi$ ,  $x(\pi x) = \frac{\pi^2}{6} \left(\frac{\cos 2x}{1^2} + \frac{\cos 4x}{2^2} + \frac{\cos 6x}{3^2} + \dots\right)$
- 29. Find the type, transform to normal form and solve  $u_{xx} 2u_{xy} + u_{yy} = 0$ .
- 30. Find the temperature in a laterally insulated bar of length L whose ends are insulated, assuming that the initial temperature is

$$f(x) = x \text{ if } 0 < x < \frac{L}{2}$$

$$=L-x$$
 if  $\frac{L}{2} < x < L$ .