K19U 3028 (4)

- **28.** Let S be an n-surface in \mathbb{R}^{n+1} , let X be a smooth tangent vector field on S, and let $p \in S$. Then prove that there exists an open interval I containing O and a parametrized curve $\alpha: I \to S$ such that i) $\alpha(0) = p$, ii) $\alpha(t) = X(\alpha(t))$ for all $t \in I$ and iii) If $\beta: \tilde{I} \to S$ is any other parametrized curve in S satisfying i) and ii), prove that $\tilde{I} \subset I$ and $\beta(t) = \alpha(t)$ for all $t \in I$
- **29.** Let S be an n-surface in \mathbb{R}^{n+1} , $\alpha: I \to S$ be a parametrized curve in S to $\in I$, and let $\overline{v} \in S_{\alpha(t_0)}$. Then prove that there exists a unique vector field V, tangent to S along α , which is parallel and has $V(t_0) = \overline{v}$.
- 30. Prove that the Weingarten map L is self-adjoint

Reg. No.:....

K19U 3028

Name :

V Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)

Examination, November- 2019

(2016 Admission Onwards)

BHM 504: DIFFERENTIAL GEOMETRY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries one mark. (4×1=4)

- Define the height of a level set.
- 2. What is the level set of the function-

$$f(x_1,...x_{n+1}) = x_1^2 + ... + x_n^2$$
 at c, where c>0, n=1.

3. Define the gradient of a smooth function

$$f: U \to \mathbb{R}, U \subseteq \mathbb{R}^{n+1}$$
 at a point $p \in U$.

- Define a smooth vector field.
- 5. If X is a smooth vector field on an open set $U \subseteq \mathbb{R}^{n+1}$, define the derivative of X with respect to a vector $\overline{v} \in \mathbb{R}_p^{n+1}$, $p \in U$.

SECTION-B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6×2=12)

6. Sketch the level sets and graph of $f: \mathbb{R}^2 \to \mathbb{R}$, where $f(x_1, x_2) = -x_1^2 + x_2^2$.

P.T.O.

- 7. Define a vector at a point $p \in \mathbb{R}^{n+1}$ and interpret it geometrically.
- 8. Explain why the Mobius band is not a 2 Surface.
- 9. Define the covariant derivative of a smooth vector field and prove that it is independent of the choice of $\mathbb N$, where $\mathbb N$ is the orientation-vector field.
- 10. If X and Y are parallel vector fields along α , prove that X.Y is constant along α
- 11. Show that the function which sends $\bar{\nu}$ to $\nabla_{\bar{\nu}} f$ is a linear map from \mathbb{R}_p^{n+1} to \mathbb{R} .
- 12. Define the Weingarten map and interpret it geometrically.
- **13.** Compute $\nabla_{\bar{v}} f$, where $f(x_1, x_2) = x_1^2 x_2^2$ where $\bar{v} = (1, 0, 2, 1)$
- **14.** Find $\nabla_{\overline{v}} X$, where $X(x_1, x_2) = (x_1, x_2, x_1, x_2, x_2^2)$ and $\overline{v} = (1, 0, 0, 1)$

SECTION- C

Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8×4=32)

- 15. Obtain the integral curve through (1, 0) and through an arbitrary point (a, b) of the vector field X (p) = (p,X(p)) where $X(x_1, x_2) = (-x_2,x_1)$.
- **16.** Prove that the n-plane $a_1x_1 + ... + a_{n+1}x_{n+1} = b$ is an n-surface, where $(a_1, a_2, ... a_{n+1}) \in \mathbb{R}^{n+1}$ and $(a_1, ..., a_{n+1}) \neq 0$.
- 17. Let S be an n-surface in \mathbb{R}^{n+1} , $S=f^{-1}(c)$, where $f:U\to\mathbb{R}$ is such that $\nabla f(q)\neq 0$ for all $q\in S$ and $g:U\to\mathbb{R}$ is a smooth function and $p\in S$ is an extreme point of g on S. Prove that there exists a real number λ such that $\nabla g(p)=\lambda\nabla f(p)$.
- 18. Prove that each n-surface in \mathbb{R}^{n+1} has exactly two orientations.
- 19. For each $a,b,c,d,\in\mathbb{R}$, Prove that the parametrized curve $\alpha(t) = (\cos(at+b),\sin(at+b),ct+d)$ is a geodesic in the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 .

20. If X and Y are smooth vector fields along the parametrized curve α and f is a smooth function along α , prove that $(f\dot{X})=fX+f\dot{X}$.

(3)

- 21. If X and Y are smooth vector fields tangent to S along a parametrized curve $\alpha: I \to S$, show that (X.Y)' = X'.Y + X.Y', where X is the covariant derivative of X.
- **22.** For $\theta \in \mathbb{R}$, let $\alpha_{\theta} : [0, \pi] \to S^2$ be the parametrized curve in the unit 2-sphere S^2 from p (0, 0, 1) to q = (0, 0, -1) defined by $\alpha_{\theta}(t) = (\cos \theta \sin t, \sin \theta \sin t, \cos t)$. find the parallel transport $P_{\alpha_{\theta}}(\overline{v})$, where $\overline{v} = (p, 1, 0, 0)$.
- **23.** If X and Y are smooth vector fields on an n-surface S in \mathbb{R}^{n+1} and \overline{v} is a vector tangent to S at $p \in S$, show that $\nabla_{\overline{v}}(X+Y) = \nabla_{\overline{v}}(X) + \nabla_{\overline{v}}(Y)$.
- **24.** If S is the n-sphere $x_1^2 + ... x_n^2 = r^2$ of radius r>0 oriented by the inward unit normal vector field N, prove that $L_p(\overline{\nu}) = \frac{1}{r} \overline{\nu}$, $\overline{\nu} \in S_p$.
- 25. Prove that the curvature at a point p on a curve C in \mathbb{R}^2 measures the normal component of acceleration of any unit speed parametrized curve in C passing through p.
- **26.** Find the curvature of the circle C, Where C is the circle $f^{-1}(r^2)$, when $f(x_1,x_2)=(x_1-a)^2+(x_2-b)^2$ and oriented by the outward normal $\nabla f/\|\nabla f\|$.

SECTION- D

Answer any 2 questions out of 4. Each question carries 6 marks. (2×6=12)

27. If U is an open set in \mathbb{R}^{n+1} , $f:U\to\mathbb{R}$ is smooth, $p\in U$ is a regular point of f and c=f(p), show that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.