K18U 2276

SECTION - D

Answer any one question. Each question carries 10 marks.

 $(1 \times 10 = 10)$

- 34. State and prove Cauchy's integral formula.
- 35. If a function f is analytic throughout an annular domain $R_1 < |z z_0| < R_2$, centred at z₀ and C denote the positively oriented simple closed contour around z₀ and lying in that domain, prove that f(z) has a series expansion.

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} , R_1 < |z - z_0| < R_2,$$

where
$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$
 (n = 1, 2, 3, . . .)

and
$$b_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{-n+1}} dz (n = 1, 2, 3...)$$

K18U 2276

V Semester B.Sc. Hon's (Mathematics) Degree (Supplementary) **Examination, November 2018** BHM 504 : COMPLEX ANALYSIS - I

(2013 - 15 Admission)

Max. Marks: 80

Time: 3 Hours

SECTION - A

Answer all questions. Each question carries 1 mark.

 $(10 \times 1 = 10)$

- 1. Write the function $f(z) = z^2$ in the form $f(z) = u(r, \theta) + iv(r, \theta)$.
- 2. Find the derivative of $(2z^2 + i)^5$.
- 3. Define entire functions and give an example.
- 4. Prove that $|\cosh z|^2 = \sinh^2 x + \cos^2 y$.

contour between 0 and $\pi + 2i$.

5. Evaluate 6 eizt dt.

6. By finding an antiderivative, evaluate $\int \cos(\frac{z}{2}) dz$, where the path is any

- 7. If C is any closed contour lying in the open-disk |z| < 2, find the value of $\int\limits_{C} \! \left(ze^{z}\right) \! / \! \left(z^{2}+9\right)^{5} \; dz \, .$
- 8. What is the image of each branch of a hyperbola $x^2 y^2 = c$, c > 0, under the mapping $w = z^2$?
- 9. Examine whether T $(x, y) = e^{-y}$, sinx is harmonic.
- 10. Find the zeros of sinhz.

P.T.O.

SECTION - B

Answer any 10 questions. Each question carries 3 marks.

 $(10 \times 3 = 30)$

- 11. Write $f(z) = x^2 y^2 2y + i(2x 2xy)$ in terms of z, where z = x + iy.
- 12. Prove that the real and imaginary parts of $f(z) = e^z$ satisfy the Cauchy Riemann equations.
- 13. If f(z) is analytic in a given domain D and if |f(z)| is a constant throughout D, show that f(z) is a constant.
- 14. Prove that $\cos^{-1} z = -i \log \left[z + i \left(1 z^2 \right)^{\frac{y_2}{2}} \right]$.
- 15. Find $\int_C f(z) dz$, where f(z) = (z + 2)/z and C is the semi circle $z = 2e^{i\theta}$, $0 \le \theta \le \pi$.
- 16. If C is a positively oriented unit circle |z| = 1, evaluate $\int_{C} \frac{\exp(2z)}{z^4} dz$.
- 17. If C denote the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$ and $b = \pm 2$, find $\int_C \frac{z}{2z+1} dz$.
- 18. Find the harmonic conjugate of $u(x, y) = y^3 3x^2y$.
- 19. Find the analytic function f(z) = u + iv of which the real part is $u = e^{-x}[(x^2 y^2) \cos y + 2x \sin y]$.
- 20. Prove that the function $f(z) = x^2y^5 (x + iy)/(x^4 + y^{10})$, $z \ne 0$ and f(0) = 0 satisfy the Cauchy Riemann equations at the origin.
- 21. Show that the function f(z) = xy + iy is not analytic.
- 22. Obtain the Maclaurin's series representation of $f(z) = \frac{1}{1-z}$.
- 23. Expand $f(z) = \frac{1}{z-1} \frac{1}{z-2}$ into a series involving powers of z for |z| < 1.
- 24. Prove that the power series $S(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n$ can be differentiated term by term.

SECTION - C

Answer any 6 questions. Each question carries 5 marks.

 $(6 \times 5 = 30)$

- 25. Show that the line x = a in the z plane corresponds to the parabola $v^2 = -4a^2(u a^2)$ under the mapping $w = z^2$.
- 26. Let f(z) = u(x, y) + iv(x, y), z = x + iy, $z_0 = x_0 + iy_0$ and $w_0 = u_0 + iv_0$.

$$\lim_{f \ (x,\,y) \to (x_{_0},\,y_{_0})} u(x,y) = u_{_0}, \\ \lim_{(x,\,y) \to (x_{_0},\,y_{_0})} \ v(x,\,y) = v_{_0}. \text{ Show that } \lim_{z \to z_{_0}} f(z) = w_{_0}.$$

- 27. Find the value of $\left|\int_{C}^{\overline{z}} dz\right|$ where C is the right hand half $z=2e^{i\theta}, -\pi/2 \le \theta \le \pi/2$.
- 28. State and prove the Fundamental theorem of Algebra.
- 29. Prove that $\int_C z^{a-1} dz = i \frac{2R^a}{a} \sin(a\pi)$, where C is the positively oriented circle. $z = Re^{i\theta}, -\pi \le \theta \le \pi$, about the origin and 'a' is any non-zero real-number.
- 30. If C is a contour of length L, f(z) is piecewise continuous on C and M is a non-negative constant such that $|f(z)| \le M$ for all points z on C at which f(z) is defined, show that $\left|\int\limits_C \overline{z} \ dz\right| \le ML$.
- 31. If a function f is entire and bounded in the complex planes, prove that f(z) is a constant throughout the plane.
- 32. If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, show that its component functions u and v are harmonic in D.
- 33. Represent the function $f(z) = \frac{4z+4}{z(z-3)(z+2)}$ in Laurent's series when i) 0 < |z| < 1 and ii) 2 < |z| < 3.