

K15U 0345

Reg. No.:

Name:

V Semester B.Sc. (Hon's) (Mathematics) Degree (Regular)
Examination, November 2015
BHM 501 : ALGEBRA, ALGORITHMS AND DATA STRUCTURES

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions.

 $(10 \times 1 = 10)$

- 1. Find f(x) + g(x) and $f(x) \cdot g(x)$ in $Z_8[x]$ if f(x) = 4x 5 and $g(x) = 2x^2 4x + 2$.
- 2. What do you mean by an irreducible polynomial in F[x]?
- 3. State true or false: If F is a filed, the units of F [x] are precisely the nonzero elements of F.
- 4. What do you mean by projection homomorphism in rings?
- 5. Give an example for a prime ideal in \mathbb{Z} , the set of all integers.
- 6. What do you mean by a tree?
- 7. What do you mean by data structure?
- 8. What is the complexity of a linear search algorithm?
- 9. Suppose multi dimensional arrays A and B are declared using A (-2:2,2:22) and B (1:8,-5:5,-10:5). Find the number of elements in A and B.
- 10. What do you mean by sparse matrices?

Answer any 10 short answer questions out of 14.

(10×3=30)

- 11. Prove that $x^2 2$ has no zeros in the rational numbers.
- 12. Apply division algorithm for $f(x) = x^6 + 3x^5 + 4x^2 3x + 2$ and $g(x) = x^2 + 2x 3$ in $\mathbb{Z}_7[x]$.

P.T.O.

K15U 0345

13. Show that $25x^5 - 9x^4 - 3x^2 - 12$ is irreducible over Q.

- 14. Prove that a ring homomorphism $\phi: R \to R'$ is a one-to-one map if and only if $Ker(\phi) = \{0\}.$
- 15. Let R be a ring with unity and N be an ideal of R containing a unit. Prove that N = R.
- 16. Show that the real number $\alpha = \sqrt{1 + \sqrt{3}}$ is algebraic over \mathbb{Q} . Also find deg (α , \mathbb{Q}).
- 17. Show that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a basis for $\mathbb{Q}\left(\sqrt{2}, \sqrt{3}\right)$ over \mathbb{Q} .
- 18. Explain the term space-time tradeoff of algorithms.
- 19. What do you mean by complexity of an algorithm?
- 20. Write a note on big 'O' notation.
- 21. Explain different categories of subalgorithms.
- 22. What do you mean by linear arrays? Write an algorithm for traversing linear arrays.
- 23. Write a note on binary search algorithm in linear arrays. What are the limitations of binary search algorithms?
- 24. Write an algorithm for matrix multiplication.

Answer any 6 short answer questions out of 9.

(6×5=30)

- 25. Prove that the set R[x] of all polynomials in an indeterminate x with coefficients in a ring R is a ring under polynomial addition and multiplication. If R is commutative then prove that R[x] is also commutative.
- 26. State and prove division algorithm in F[x].
- 27. Prove that the polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \dots + x + 1 \text{ is irreducible over } \mathbb{Q} \text{ for any prime p.}$$

- 28. State and prove fundamental homomorphism theorem for rings.
- 29. An ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal if and only if p(x) is irreducible over F.

3-

K15U 0345

- 30. Draw a tree diagram for the algebraic expression $(7x + y) (5a b)^3$
- 31. Write an algorithm to find the root of a quadratic equation.
- 32. Suppose the following numbers are stored in an array A:32, 51, 27, 85, 66, 23, 13, 57Apply bubble sort to sort these numbers in ascending order.
- 33. Suppose A is a sorted array with 200 elements and suppose a given element x appears with the same probability in any place in A. Find the worst-case running time f(n) and the average-case running time g(n) to find x in A using the binary search algorithm.

Answer any one essay questions out of 2.

 $(1 \times 10 = 10)$

- 34. Prove that every integral domain D can be enlarged to a filed F such that every element of F can be expressed as a quotient of two elements of D.
- 35. What do you mean by an algorithm? Give an example. What are the different parts of an algorithm?