11111	111	HEE	ш	HIRD	11111	HIR	HH	180	m
	Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш

K18U 0319

Reg. No.:....

Name :

IV Semester B.Sc. Hon's (Mathematics) Degree (Regular/Supple/Imp.)

Examination, May 2018

BHM 401 : REAL ANALYSIS – II

(2013 – 2015 Admns.)

Time: 3 Hours

Marks: 80

Answer all the 10 questions.

 $(10 \times 1 = 10)$

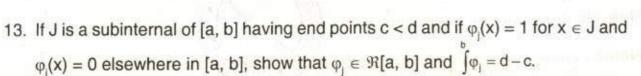
- 1. If I = [0, 4], calculate the norm of the partition $P_1 = (0, 1, 2, 4)$.
- 2. Define a tagged partition of the closed interval [a, b].
- 3. State the Cauchy criterion for the Riemann integrability of a function $f:[a,b] \to IR$.
- 4. Define the nth Simpson approximation.
- 5. State the Trapezoidal rule.
- 6. Find $\lim \left(\frac{x^2 + nx}{n}\right)$.
- 7. If $f: D \to \mathbb{R}$, where $D \le \mathbb{R}^n$, define the partial derivative of f with respect to x_i at $X = (x_1, x_2, ..., x_n) \in D$.
- 8. Define the derivative of a function $f: \mathbb{R}^2 \to \mathbb{R}$.
- If a function f: IR² → IR is differentiable at (x₀, y₀), what is the maximum value of Du f(x₀, y₀).
- 10. If $x = t^2$, $y = t^3$ and z = xy, find $\frac{dz}{dt}$.

Answer any 10 short answer questions out of 14.

 $(10 \times 3 = 30)$

P.T.O.

- 11. Show that every constant function on [a, b] is in R [a, b].
- 12. If $f \in \Re [a, b]$ and $|f(x)| \le M$ for all $x \in [a, b]$, show that $\left| \int_a^b f \right| \le M(b-a)$.



- 14. If $f \in \Re[a, b]$ and if $[c, d] \le (a, b]$, prove that the restriction of f to [c, d] is in $\Re[c, d]$.
- 15. If K (x) = $x^2 \cos \left(\frac{1}{X^2}\right)$ for $x \in (0, 1]$ and K(0) = 0, show that the fundamental theorem of calculus does not apply to K¹.
- 16. Prove that the set Q, of rational numbers in [0, 1] is a null set.
- 17. If f and g belong to $\Re[a, b]$, show that fg belongs to $\Re[a, b]$.
- 18. Prove that the indefinite integral F defined by $F(z) = \int\limits_a^z f$, for $z \in [a, b]$, is continuous on [a, b].
- 19. Find $D_0 f(1, 1)$, where $f(x, y) = x^2 + xy + 2$ and $\bar{u} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.
- 20. If $f(x, y) = x^2 y^2 + 2y$, verify whether $f_{112} = f_{121} = f_{211}$.
- 21. If f: IRⁿ→IR is a differentiable function on an open set D, then prove that at each point x in D at which the gradient of f does not vanish the maximum rate of change of f is in the direction ∇f(x) and the magnitude of the rate of increase in this direction is |∇f(x)|.
- 22. If $z = x^2 + y^3$, where x = st, $y = e^{st}$ find $\frac{\partial z}{\partial s}$.
- 23. Show that u = e*cosy and v = e*siny satisfy the Cauchy-Riemann equations.
- 24. If $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (x_0, y_0) , show that $D_0 f(x_0, y_0) = |\nabla f(x_0, y_0)|$.

Answer any 6 short essay questions out of 9.

(6×5=30)

- 25. If $f \in \Re$ [a, b], show that the value of the integral in uniquely determined.
- 26. If f, $g \in \Re$ [a, b] and $f(x) \le g(x)$ for all $x \in [a, b]$, show that $\int\limits_a^b f \le \int\limits_a^b g$.
- 27. Prove that the Thomae's function $h:[0,1]\to\Re$ defined by h(x)=0 if $x\in[0,1]$ is rational, h(0)=1 and $h(x)=\frac{1}{n}$ if $x\in[0,1]$ is the rational number $x=\frac{m}{n}$, $m,n\in\mathbb{N}$, (m,n)=1, is Riemann integrable on [0,1].

- 28. If $f \in \mathfrak{R}$ [a, b] and α , β , γ are any real numbers in [a, b] and if any of the two integrals $\int_{0}^{\beta} f$, $\int_{0}^{\gamma} f$, exist, show that the third also exists.
- 29. Suppose that the functions F and G are differentiable on [a, b] and f = F' and g = G' belong to \Re [a, b]. Prove that $\int_a^b fG = FG\Big|_a^b \int_a^b Fg$.
- 30. Given that (f_n) is a sequence of continuous functions defined on a set $A \le IR$ and (f_n) converges uniformly to a function f. Then show that f is continuous.
- 31. If R is the radius of convergence of Σa_nxⁿ and K is a closed bounded interval contained in the interval of convergence (–R, R), prove that the power series converges uniformly.
- 32. Let f be defined in a neighbourhood of $(x_0, y_0) \in \mathbb{R}^2$. Suppose f has partial derivatives f_1 , f_2 , f_{12} and f_{21} in this neighbourhood and that the mixed partials f_{12} and f_{21} are continuous at (x_0, y_0) . Show that $f_{12}(x_0, y_0) = f_{21}(x_0, y_0)$.
- 33. If f is differentiable at $(x_0, y_0) \in \mathbb{R}^2$ and if $\bar{u} = (u_1, u_2)$ is any unit vector, show that $D_0 f(x_0, y_0)$ exists and $D_0 f(x_0, y_0) = f_1(x_0, y_0) u_1 + f_2(x_0, y_0) u_2$.

Answer any one essay question out of 2.

 $(1 \times 10 = 10)$

- 34. State and prove the Cauchy criterion for the Riemann integrability of a function f.
- 35. Let f be continuous on the rectangle R = [a, b] × [c, d] and let F(y) = $\int_a^b f(x, y) dx$ for each $y \in [c, d]$. If the partial derivative $\frac{\partial f}{\partial y}$ exists and is continuous on R, prove that F is differentiable on R and F'(y) = $\int_a^b \frac{\partial}{\partial y} f(x, y) dx$.